
Celtic Sea FLOW – potential range of regional manufacturing opportunities.

Morning Session - 10:30-12:00PM Monday 12 June 2023

European Union

OUR CONTACT DETAILS

- 1. Bradley McKay [Research Engineer Electrical ORE] Bradley.McKay@ore.catapult.org.uk
- 2. Tom.Quinn [Head of Analysis & Insights] Tom.Quinn@ore.catapult.org.uk
- 3. Dylan.Duncan [Research Engineer, Mechanical Dylan.Duncan@ore.catapult.org.uk
- 4. Scott.Davie [Engineer Floating Wind] Scott.Davie@ore.catapult.org.uk
- 5. Konstantinos.Bacharoudis [Senior Research Engineer Blades] Konstantinos.Bacharoudis@ore.catapult.org.uk

GLASGOW BLYTH LEVENMOUTH GRIMSBY ABERDEEN CHINA LOWESTOFT PEMBROKESHIRE **CORNWALL**

Welcome Julie Taylor – ORE Catapult South West Innovation Manager

Welcome

- Housekeeping
- Both a.m. and p.m. webinar sessions will be recorded
- Questions Please use Zoom Q&A function, not the Chat (although this will be monitored)
- Slides These will be uploaded to Celtic Sea Cluster website: <u>https://celticseacluster.com/</u>
- Timetable

Timetable

PARTICIPANTS/PRESENTERS	ORGANISATION	TITLE	MINS	START	END
	N	IORNING SESSION			
Julie Taylor	ORE Catapult	Welcome. Housekeeping. Outline of morning.	5 10:30		10:35
Simon Cheeseman	ORE Catapult	ORE Catapult. Celtic Sea Cluster Global Offshore Wind Market Cornwall FLOW Accelerator.	10	10:35	10:45
Tom Quinn	ORE Catapult	FLOW in the Celtic Sea – Size & Scope. Leasing round and CfD updates.	15	10:45	11:00
All		Q&A	5	11:00	11:05
Konstantinos Bacharoudis	ORE Catapult	Blades	15	11:05	11:20
All		Q&A	5	11:20	11:25
Dylan Duncan	ORE Catapult	Towers & Foundations	20	11:25	11:45
All		Q&A	5	11:45	11:50
Julie Taylor	ORE Catapult	Wrap Up.	10	11:50	12:00
Total			90		

Timetable

PARTICIPANTS/PRESENTERS	ORGANISATION	TITLE	MINS	START	END
AFTERNOON SESSION					
Julie Taylor	ORE Catapult	Welcome. Housekeeping, Outline of afternoon.	5 14:00		14:05
Simon Cheeseman	ORE Catapult	ORE Catapult. Celtic Sea Cluster Global Offshore Wind Market Cornwall FLOW Accelerator	10	14:05	14:15
Tom Quinn	ORE Catapult	FLOW in the Celtic Sea. Size & Scope. Update on leasing and CfD rounds.	15	14:15	14:30
All		Q&A	5	14:30	14:35
Scott Davie	ORE Catapult	Anchoring & Mooring Systems	15	14:35	14:50
All		Q&A	5	14:50	14:55
Bradley McKay	ORE Catapult	Electrical Infrastructure	15	14:55	15:10
All		Q&A	5	15:10	15:15
Julie Taylor	ORE Catapult	Wrap Up.	10	15:15	15:25
Total			85		

Offshore Wind and FLOW Context

Simon Cheeseman – ORE Catapult South West Programme Manager

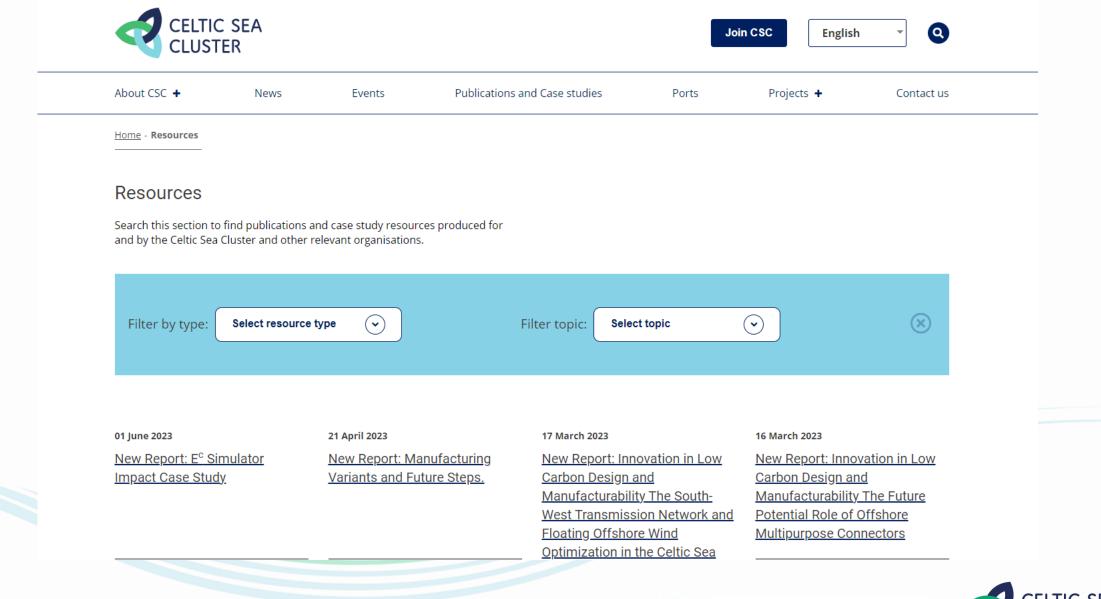
Simon Cheeseman

- Work for Offshore Renewable Energy Catapult, as South West Programme Manager running offices in Cornwall and Devon. Delivering strategy to accelerate floating wind in the Celtic Sea.
- Background is managing complex, multi partner, multimillion pound projects in renewables both in the public and private sectors.
- Sit on the Board of the Celtic Sea Cluster and represent ORE Catapult on the Celtic Sea Developers Alliance.

About ORE Catapult

Our Mission: Deliver the UK's largest clean growth opportunity by accelerating the creation and growth of UK companies in offshore renewable energy.

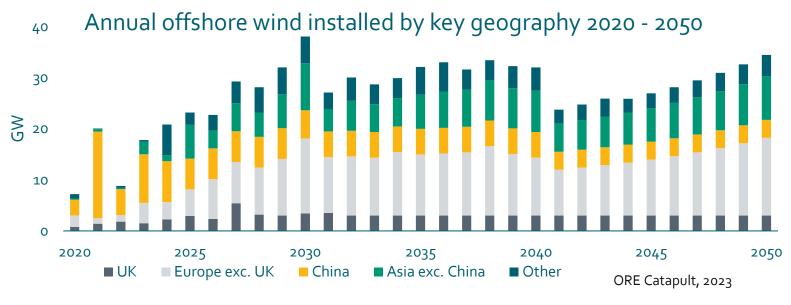
- 1. 300+ staff including engineering and research experts with deep sector knowledge
- 2. Independent and trusted partner
- 3. Work with industry and academia to commercialise new technologies
- 4. Reduce the cost of offshore renewable energy
- 5. Deliver UK economic benefit



Celtic Sea Cluster Publications and Case studies [Resources]

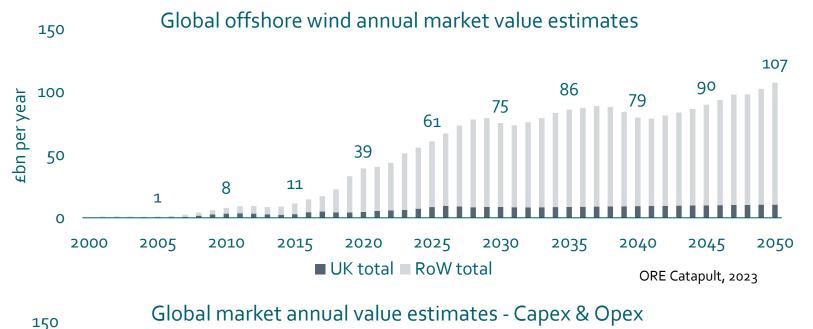


Global offshore wind growth


Offshore wind global capacity to date

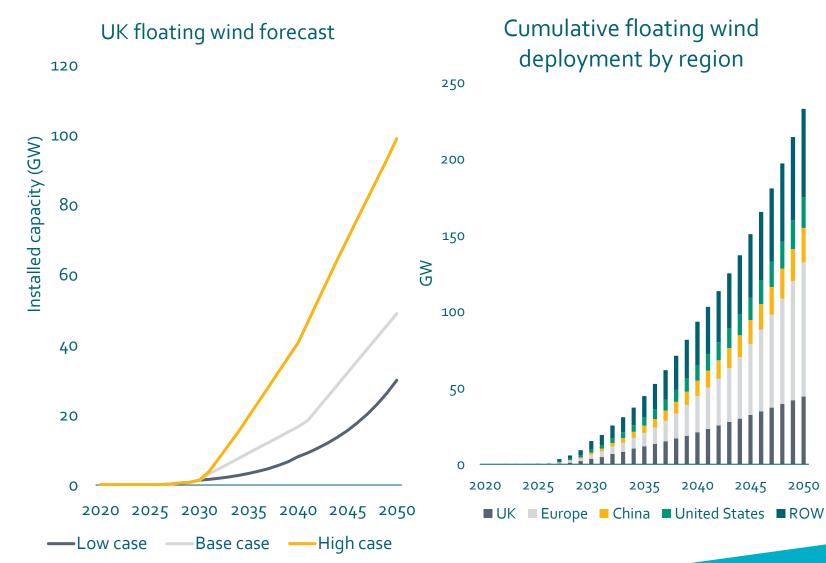
- Up to 2015, offshore wind very much a European play
- Generally, countries building on existing onshore wind expertise
- China overtook the UK as the world's leader in offshore wind capacity after installing 16.9GW in 2021.
- UK share of capacity falling from peak 53% in 2012 to 21% in 2022
- Total Europe share falling from 91% in 2012 to 47% in 2022
- Compound Annual Growth Rate from 2010 to 2020 of 27%

Offshore wind global capacity forecast


1000 Cumulative offshore wind installed by key geography 2020 -

- Our forecast assumes a near-term push to achieve 2030 targets
- Annual installations increase from ~9GW in 2022 to 38GW in 2030 and 34GW in 2050
- Total Europe share falling from 47% in 2022 to 39% in 2050
- China share drops from peak of 49% in 2022 to 20% by 2050
- Other markets grow share from 2% in 2022 to 13% by 2050

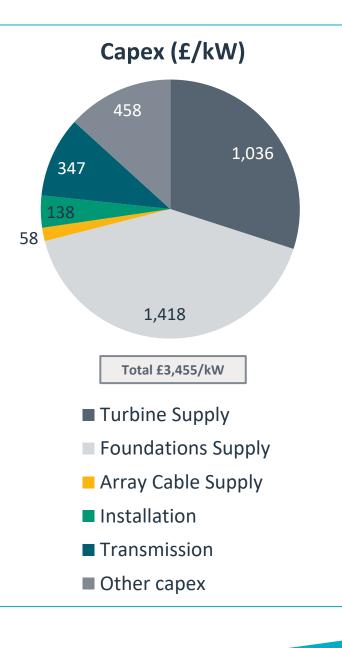
Offshore wind global market value estimates

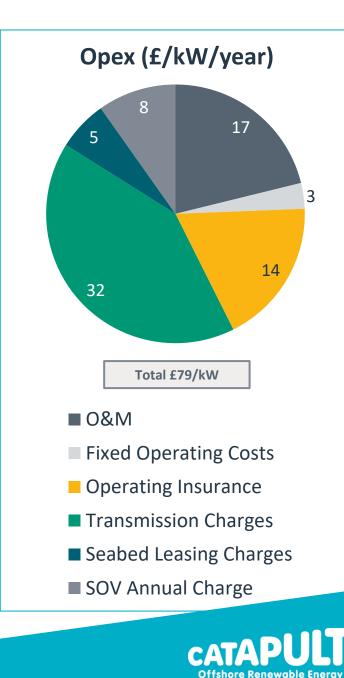


- Near doubling of market value from 2020 to 2030 due to ramp-up to 2030 targets
- Market value reaches £107bn per year by 2050 – slower increase due to more gradual ramp-up and cost reductions

- Capex always forms largest share of value while building out
- Opex taking increasing share as installed base grows
- Continuous pipeline important for short-term construction jobs

Floating wind is expected to take off from a standing start

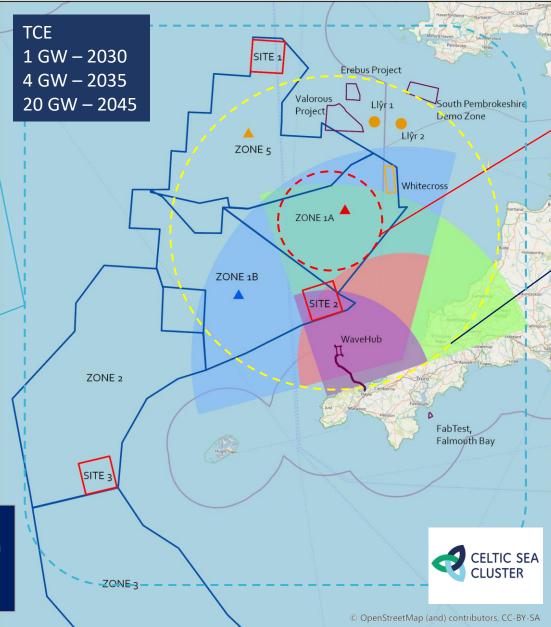

- ScotWind leasing round allocated nearly 17GW to floating offshore projects.
- March 2023 saw the announcement of 5.4GW of floating wind lease capacity from the INTOG round.
- Scotland is expected to be one of the largest markets in the world for floating offshore wind with planned projects currently making up 31% of the global floating pipeline.
- The UK has a target of 5GW of installed floating wind capacity by 2030.
- Forecasts for the UK market depend on total OSW deployment


 geographical constraints are not an issue.
- Europe is expected to be a firstmover in floating wind as it was with bottom-fixed
- Elsewhere, the west coast of US, Japan, S. Korea and Taiwan are likely to be core floating wind markets

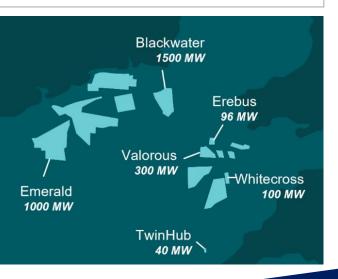
2030 Reference Site (Floating)

Scenario Definition	Unit	2030 Ref Site
Turbine numbers	#	67
Turbine rating	MW	15MW
Windfarm capacity	MW	1,005MW
Mean wind speed at hub height	m/s	10.52
Turbine foundation type	text	Semi-sub
Array cable type	kV	66kV
Transmission System Type	#	HVAC
Water depth	metres	98
Distance to O&M port	km	100
Distance to cable landfall	km	85
O&M Vessel Strategy	text	SOV

Marine Operations Laboratory to understand DP & Marine Simulations constraints & future ports, vessel and marine operations needs

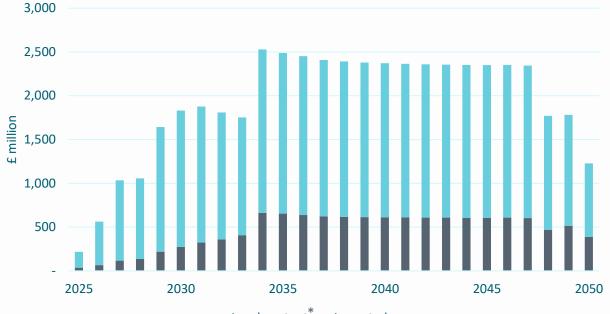

Ec simulator to output: Levelized Cost of Energy (LCOE) Levelized Cost of Carbon Abatement (LCCA) and Energy returned for Energy Invested. Will model virtual sites and help define key assumptions for FLOW in the 2030's.

Low Carbon materials & fabrication. Looking at blades, towers, foundation and electrical infrastructure and understanding the local opportunity



12 months wind resource acquisition by Flidar commencing March 2022

Understand how we can reduce carbon associated with EIA's, drive local solutions, accelerate the development phase


Tom Quinn

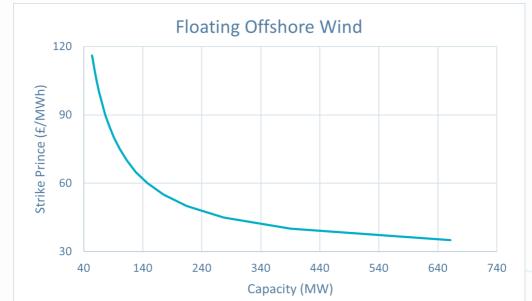
Market opportunity for the Celtic Sea region

20GW scenario OSW expenditure

■ Local content^{*} ■ Imported

Components	Unit	4GW case	20GW case
Turbines / substructures	#	235	1,035
Mass of substructures	tonnes	837,000	3,877,000
Mooring lines	km	600	2,600
Anchors mass	tonnes	24,200	120,000
Array cables	km	580	2,900
Export cables	km	1,100	5,200

*Scenarios assume £600-700m invested into ports and fabrication facilities



CfD auctions putting pressure on developers

- CfD auctions to be run annually
- Current auction (AR5) has FOW competing with other "emerging" tech in Pot 2 such as biomass, geothermal, wave & tidal.
- Auction Pot 2 budget of £25m (£35m minus £10m ringfenced for tidal) allows for ~40-150MW of FOW depending on strike price bid if FOW outbids other technologies
- FOW maximum strike price of £116/MWh (2012 terms, ~£155 today) will be a challenge for some developers

However...

- Budgets for future rounds will likely increase to allow for greater FOW deployment
- Non-price criteria may be included in future CfD rounds

European Union European Regional Development Fund

Questions and Answers

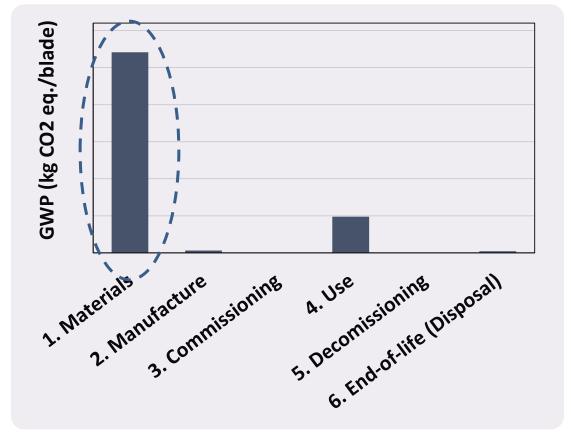
Dr Konstantinos Bacharoudis

Dr Konstantinos Bacharoudis

HM Government

European Union European Regional

evelopment Fund



Innovative design and lifecycle assessment of wind turbine rotor blades using sustainable materials: A feasibility study

12 June 2023 Dr Konstantinos Bacharoudis

Research Motivation

Largest environmental impact of blade comes from material production

Make blades <u>more circular</u> and <u>lower</u> <u>environmental impact</u> by constructing with alternative materials

Material production found to account for vast majority of blade lifetime GWP (CO_2 equivalent GHG emissions)

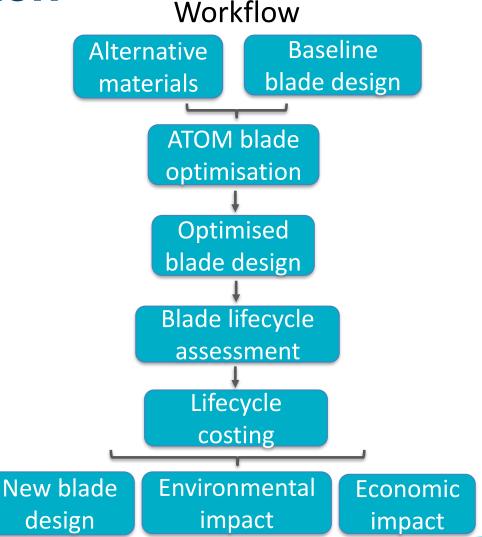
To reduce blade impact we must:

- 1. Use less impactful materials to make blades
- 2. Use **recyclable materials** which enable circularity
- 3. Match recycling technologies to materials

Scope and Research Approach

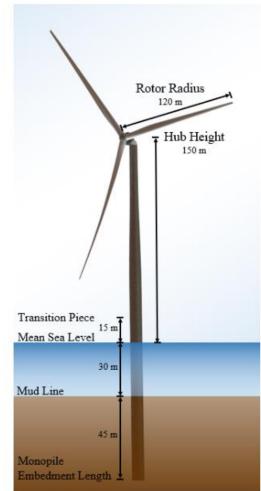
衍

Explore alternative materials that meet blade performance requirements

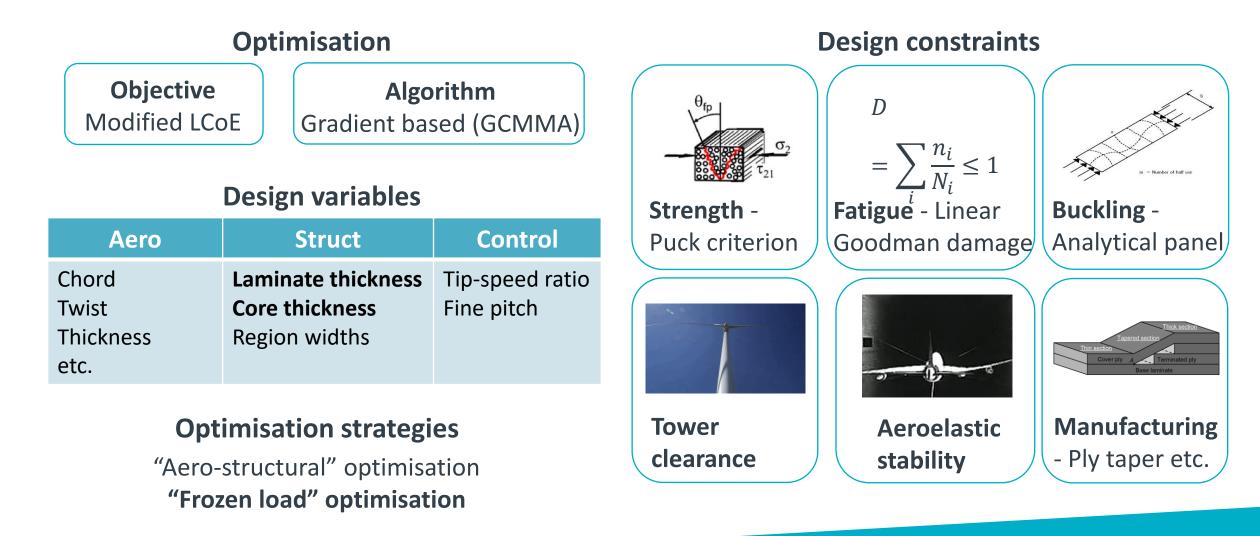

Determine environmental impact of new materials

Specify economic impact of new materials

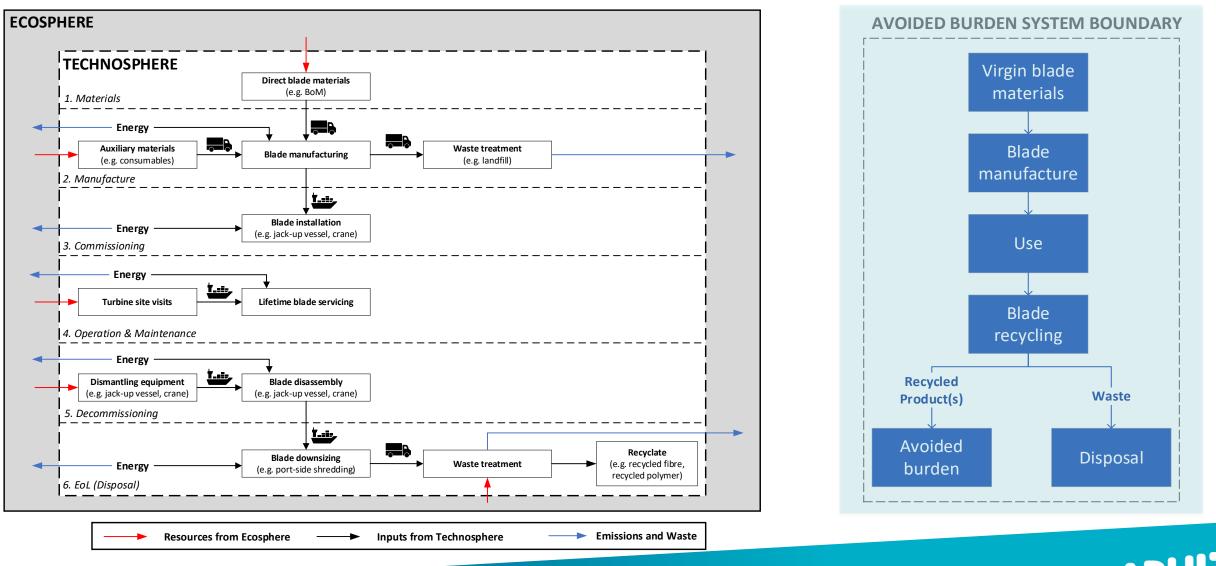
Produce feasible, optimized blade designs with minimum CO₂ footprint



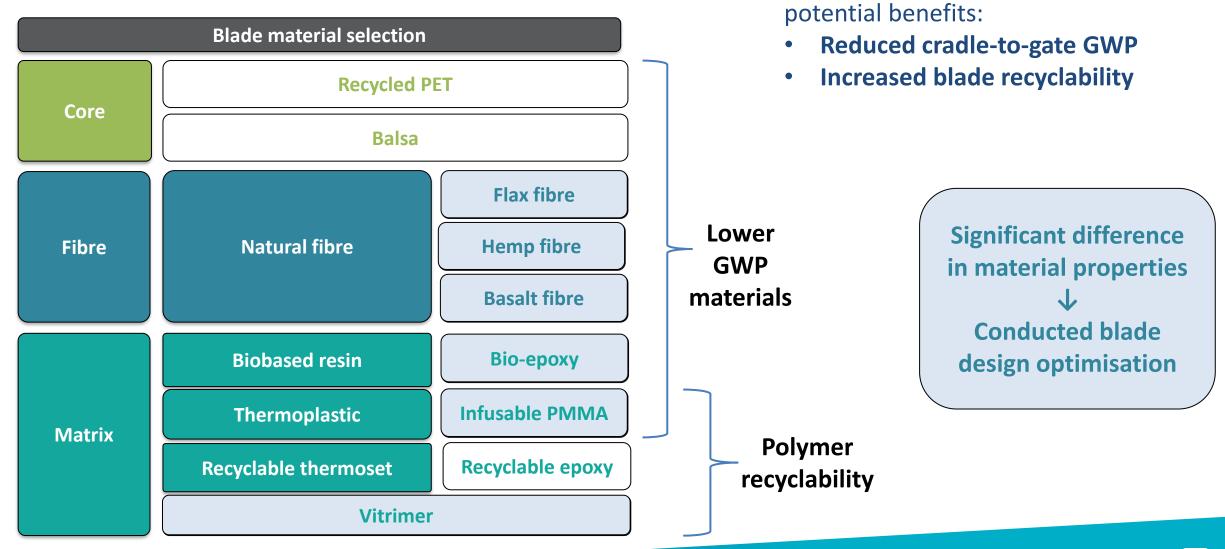
The IEA 15 MW Reference Turbine


- Developed as part of IEA Wind Task 37 by NREL and DTU^[1]
- Optimised using the NREL system level design tool WISDEM^[2]
- Blade length = 117m
- It is freely available^[3]
- In this case study, a slight modified design was used (with an extended 122m blade). The blade has been re-designed in the frame of Cornwall FLOW Accelerator project

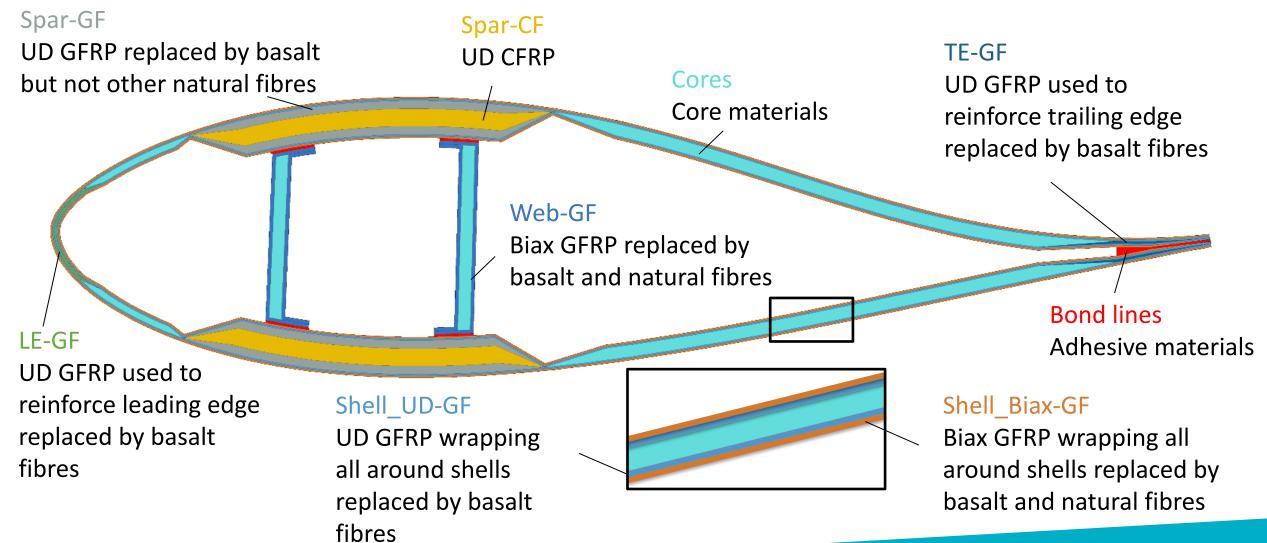
[1] E. Gaertner et al. Definition of the IEA 15-Megawatt Offshore Reference Wind Turbine. NREL/TP-5000-75698, 2020
 [2] github.com/WISDEM
 [3] github.com/IEAWindTask37/IEA-15-240-RWT

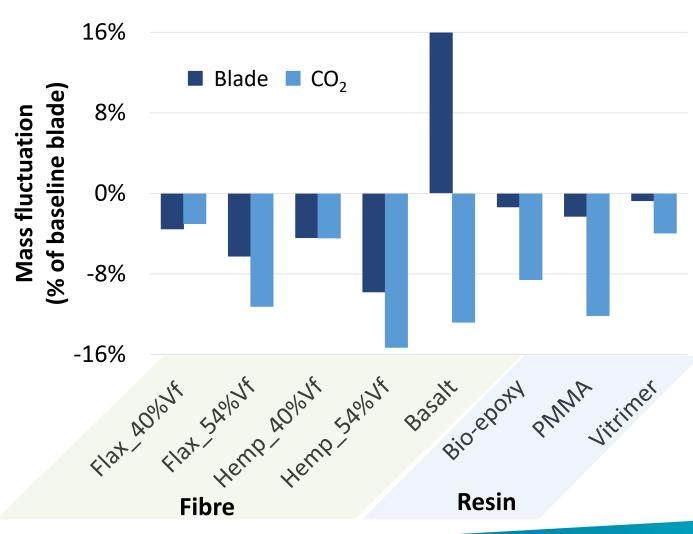

Introduction to ATOM: Methods

Offshore Renewable


Lifecycle Assessment: Methodology

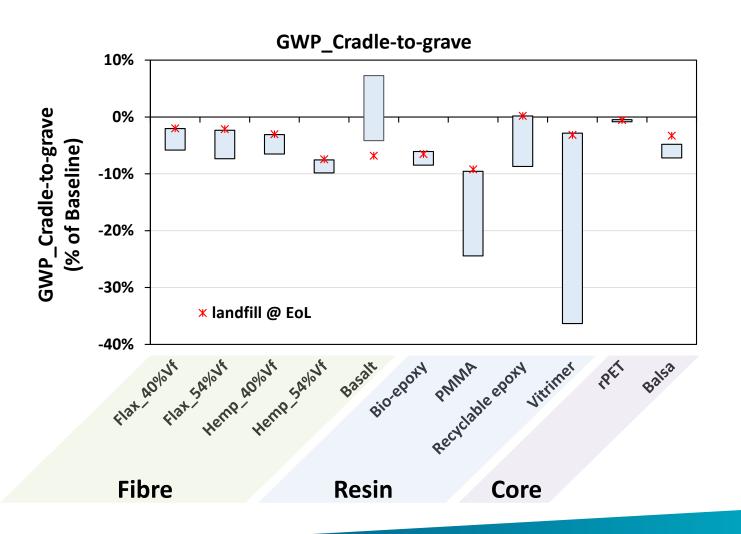
Offshore Renewable Energy


Alternative Material Selection


Alternative materials selected for two

Material Deployment

Offshore Renewabl


Results: Baseline vs Alternative Blade Materials

- Careful interpretation of the results: global minima may not have been identified
- Material properties based on rule of mixtures
- Blade and CO₂ mass reductions up to 9.8% and 15.3% respectively for natural fibres (Hemp_54%Vf)
- Natural fibre mass reduction is driven by improved specific stiffness compared to baseline
- Basalt fibre cost is twice the price of E- glass. Other natural fibres are more expensive and not available at the same scale
- Hemp: 4.5 km² of cultivated area (300 blades/year). This corresponds to the 0.03% of wheat cultivated area in UK

Lifecycle Assessment: Cradle-to-grave GWP

Almost all blade scenarios have lower cradle-tograve GWP compared to Baseline when landfilled

Range in GWP encompasses best to worst case EoL scenarios

Energy from waste is highest GWP for most blade scenarios

Mechanical+Cement kiln recycling provides lowest cradle-to-grave GWP for blades with standard resin systems

Recyclable polymers, PMMA & Vitrimer provide greatest reduction in GWP

Summary

- Attempting to minimise CO₂ mass resulted in reduction of the blade mass in most design cases
- Most natural fibre materials indicated good potential for further use in blade manufacturing
- Best cradle-to-grave GWP achieved w/ "recyclable" resin alternatives
- New "promising" designs emerged, up to:
- 10% reduction in blade mass
- 36% reduction in cradle-to-grave GWP

Gaps and Challenges

- Need a better understanding of material selection on through life operation (e.g. O&M, repair, life-expectancy, fatigue, erosion/corrosion)
- Flax/hemp fibre NCF is immature and only available in twisted yarn formats – poorer fibre alignment and lower Vf
- Blade recycling technologies are immature need more data to help make informed decision matched to specific materials

Questions and Answers

CFA – Towers and Foundations

Dylan Duncan, Research Engineer – 12/06/2023

Agenda

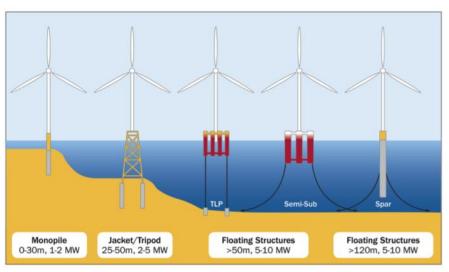
- Cover the tower and foundation work packages in CFA
 - Review LCA methodology and scope
 - Review state-of-the-art technology, materials and assumptions
 - Summarise LCA results
- Explore what a facility might look like
 - Explore scale of the technology
 - Present and future manufacturing processes
 - Challenges and opportunities

CFA reports for both tower and foundations have been published on the ORE Catapult and Celtic Sea Cluster websites

Project Introduction and Methodology

- As FOWT developments increase rapidly so does the need to decarbonise and encourage local supply chain growth
- This work follows the following steps and covers both tower and floating foundation components:
 - 1. Carrying out a literature review to highlight current technologies and industry/academia trends
 - 2. Define a reference structure and conduct a life cycle assessment (LCA)
 - **3**. Using the LCA results, identify opportunities and challenges that can decarbonise wind turbine production and encourage supply chain development

Life cycle analysis workflow [1]

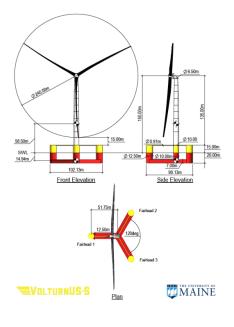

Literature Review – Structural Choices

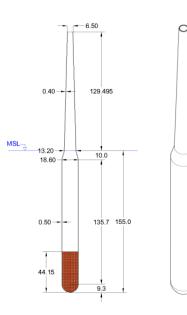
Types of wind turbine towers [1]

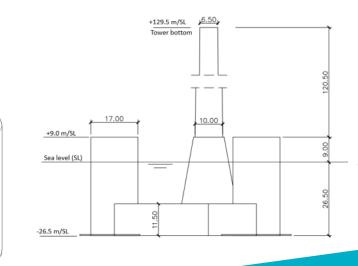
- Varied number of tower designs are available
- Industry standard tubular designs were chosen for examination, lattice or hybrids were considered but determined to be too "risky"
- Range of materials were examined but comparison came down to either steel or concrete
- 15MW scale

 Mohammadi, M. R. S., Rebelo, C., Velijkovic, M., & Da Silva, L. S. (2017, April). The Hybrid Highrise Wind Turbine Tower Concept. In International Conference on Wind Energy Harvesting, Coimbra, Portugal.
 European Wind Energy Association. (2013). Deep water. The next step for offshore wind energy.

Types of offshore structure [2]


- Wide number of floater designs are available
- Semi-Sub was chosen as the structure of choice due to higher volume of reference data and lower masses in some cases
- To date only steel and concrete structures have been used
- 15MW scale




Literature Review – Materials and Chosen Design

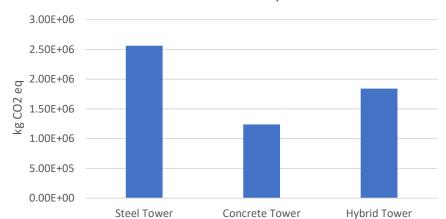
Structure	Reference Turbine	Total Mass (t)	Concrete Mass (t)	Steel Mass (t)	Ballast Mass (t)
Steel Tower	IEA 15MW UmaineUS-S Volturn	1,263	-	1,263	-
Concrete Tower	WindCrete 15MW Spar	3,558	3,258	*≈300	-
Steel Semi-Sub	IEA 15MW UmaineUS-S Volturn	17,839	-	3,914	13,840
Concrete Semi-Sub	ActiveFloat	38,550	11,480	*≈2,000	25,070

*Assumptions on Rebar mass was also added within the LCA for the concrete structures

Left: IEA 15MW Umaine US-S Volturn Semi-Sub [1] Middle: WindCrete 15MW Spar [2] Right: Active Float 15MW Concrete Semi-sub [2]

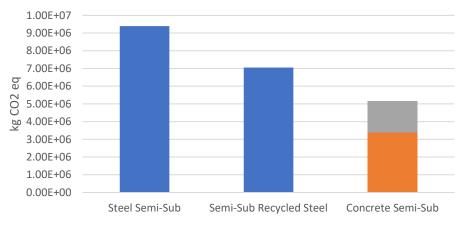
 Allen, C., Viscelli, A., Dagher, H., Goupee, A., Gaertner, E., Abbas, N., Hall, M., & Barter, G. (2020). Definition of the UMaine VolturnUS-S reference platform developed for the IEA wind 15-Megawatt offshore reference wind turbine.
 COREWIND. (2020, April). *Public design and FAST models of the two 15MW floaterturbine concepts*

LCA Results Overview



Steel vs Concrete

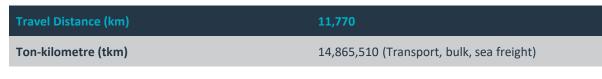
Material	Ecoinvent Name	Geography	Unit	kg CO2 – Eq [1]
S355 steel	Low-alloyed steel	Global	per kg	1.4521
S355 steel	Hot Rolled steel	Global	per kg	1.7159
Concrete (Cable Mat)	market for concrete block	Rest of World	per kg	0.15729


Manufacturing Processes	Material
Arc welding	Steel
Hot/ sheet rolling	Steel
Concrete- precast tower construction	Concrete

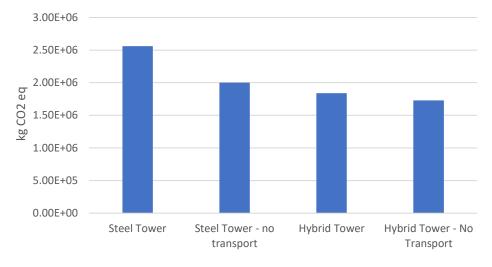
- Concrete structures outperform steel structures with a saving of around 50% CO² emissions (for the baseline model)
- This value can differ depending on design and % of rebar Carbon content of steel can play a big role in reduction, more recycled content the better
- Degree of concrete emissions also rely heavily on type of concrete used

Baseline - Tower Comparison

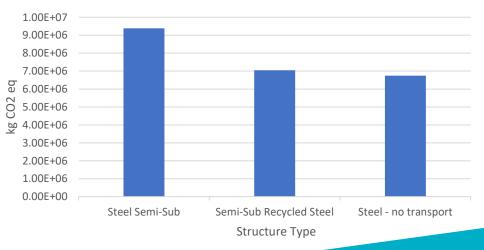
Baseline Floater Structures vs Recycled Steel



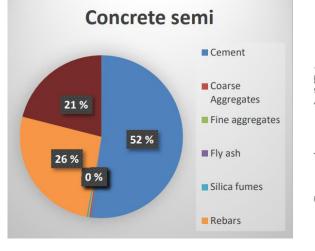
■ Steel ■ Concrete ■ Rebar %

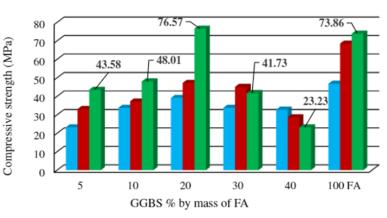

Transport Emissions – Local vs Import

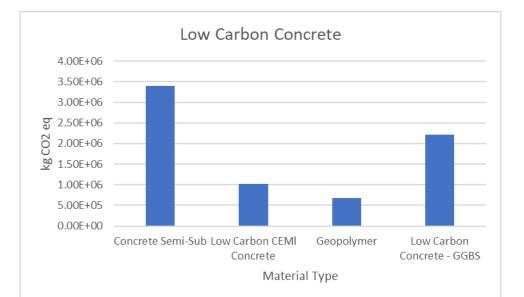
- UK steel manufacturing capacity is low hence emissions due to imports is included
- Here a scenario for steel imports from Australia was considered
- Savings as high as 20% were recorded, changes depending on mass of steel



No Transport vs Baseline - Tower Comparison


Baseline Structures vs Locally Sourced Materials




Low Carbon Solutions - Concrete

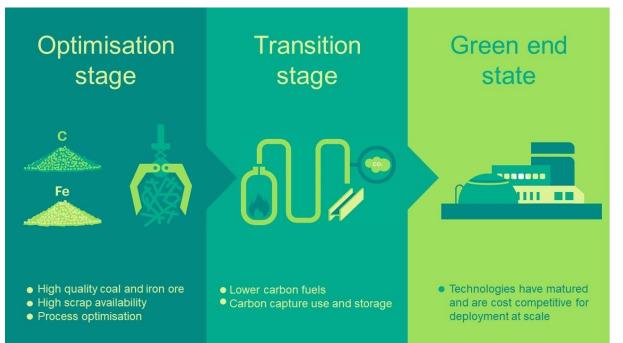
- Concrete is one of the biggest sources of CO² emissions in the world!
- Largely due to intensive processes used in the manufacture of cement (In this LCA: Portland cement is considered)
- Low carbon solutions largely attempt to reduce or outright replace cement content
- Potential savings as high as 80% for concrete emissions

7 days 14 days 28 days

Properties	Portland Cement	Geopolymer
CO ₂ emission	800-900 kg/ton	150-200 kg/ton
Embodied energy	4000-4400 MJ/ton	2200-2400 MJ/ton
Water requirement	≈600 litres/ton	≈450 litres/ ton

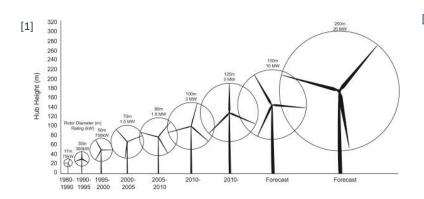
Left: % breakdown of concrete emissions [1] Middle: Compressive strength of a GGBS solution [2] Top: Table comparing geopolymer and Portland cement emissions [3]

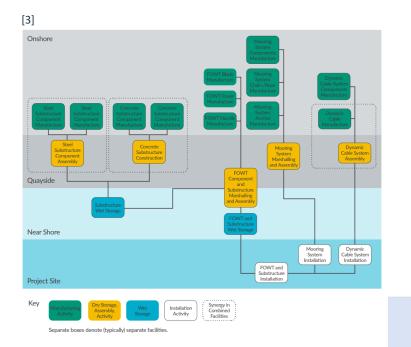
 DNV. (2022, February). Comparative study of concrete and steel substructures for FOWT.
 Bouaissi, A., Li, L., Al Bakri Abdullah, M. M., & Bui, Q. (2019). Mechanical properties and microstructure analysis of FA-GGBS-HMNS based geopolymer concrete. *Construction and Building Materials, 210*, 198-209. <u>https://doi.org/10.1016/j.conbuildmat.2019.03.202</u>
 Kumar, S., & Kumar, R. (2014). Geopolymer: Cement for low carbon economy. *Indian Concrete, 88*(7), 29-37

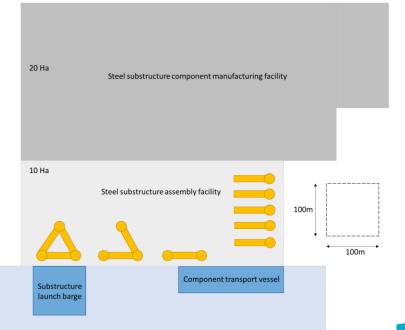

Low Carbon Solutions - Steel

- Steel making process is highly intensive and for the purposes of reducing CO² need to be improved
- New technologies and fuel inputs can help reduce fuel consumption whether it be carbon capture storage (CCS) and alternative fuels such as hydrogen

Top left: Steelmaking process [1] Right: Steel decarbonization framework [1]


[1] Ellis, B., & BHP. (2020, November). *Pathways to decarbonisation episode two: Steelmaking technology*. <u>https://www.bhp.com/news/prospects/2020/11/pathways-to-decarbonisation-episode-two-steelmaking-technology</u>

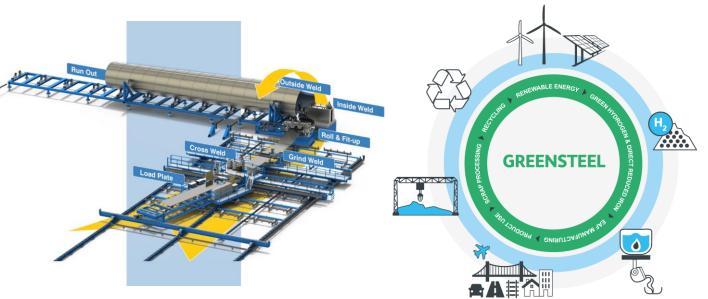



Scale of Technology

- Wind turbines are getting larger and with that, so does the size and complexity of the manufacturing facilities required to build them
- A portside facility will need to account for each sub-component and be ready for varying scales of turbines
- Planning and communication will be key

 [1] Tabassum-Abbasi, Premalatha, M., Abbasi, T., & Abbasi, S. (2014). Wind energy: Increasing deployment, rising environmental concerns. *Renewable and Sustainable Energy Reviews*, 31, 270-288
 [2] Transverse load-out supports semi-submersible floating wind farm. (2019, November 6).

Wind Systems Magazine


[3] ORE Catapult. (2022, May). Strategic Infrastructure and Supply Chain Development.

Manufacturing Processes

- Steel structures are typically made with a combination of rolling and welding processes
- Concrete structures are often made through slip forming processes
- Effort ought to be made in keeping manufacturing as close to quayside as possible
- Green steel showcases a key opportunity for reducing emissions
- New processes such as 3D printing may help further streamline manufacturing

[1] GE installs world's first spiral-welded wind turbine tower. (2023, February 27). New Atlas. <u>https://newatlas.com/energy/keystone-spiral-welding-wind/</u>
[2] Greensteel. (2020, December 8). LIBERTY Steel UK. <u>https://libertysteelgroup.com/uk/greensteel/</u>
[3] Apis Cor. (2017, February 22). Youtube https://www.youtube.com/watch?v=xktwDfasPGQ

Top Left: Spiral welding turbine tower manufacturing process [1] Top Right: Process for manufacturing green steel [2] Bottom: 3D printing concrete structure [3]

Challenges and Opportunities

Opportunities

- Material choice has a big role in emissions reduction
- Local manufacturing can reduce emissions and bring in further opportunities
- New technologies such as low carbon materials, hydrogen and novel manufacturing processes could pave the way for both FOWT developments and other industries
- New, more optimised designs could pave the way for mass and emissions reductions

Challenges

- Can the supply chain support this demand?
- Need to support the development of new technologies
- Can ports (particularly in the Celtic Sea) accommodate these structures?
- Need to clarify technology choices for planned developments
- Securing investment

Conclusion

- Emissions are largely caused by manufacturing which is driven by material selection
- Concrete structures show noticeable potential for carbon savings
- Low carbon alternatives can have a substantial impact ideally low carbon solutions for both steel and concrete should be explored
- Cutting down transportation emissions through more local content can also make a noticeable difference
- Optimising designs through material selection, manufacturing and detailed analysis can also lead to a reduction in material masses. Particularly, visible with steel structures.

Questions and Answers

Morning Wrap Up

Julie Taylor

101

Celtic Sea FLOW – potential range of regional manufacturing opportunities.

Afternoon Session - 14:00-15:30PM Monday 12 June 2023

HM Government

Welcome Julie Taylor – ORE Catapult South West Innovation Manager

Welcome

- Housekeeping
- Webinar session will be recorded
- Questions Use Zoom Q&A function, not Chat
- Slides Will be uploaded to Celtic Sea Cluster website: <u>https://celticseacluster.com/</u>
- Timetable

Timetable

PARTICIPANTS/PRESENTERS	ORGANISATION	TITLE	MINS	START	END	
AFTERNOON SESSION						
Julie Taylor	ORE Catapult	Welcome. Housekeeping, Outline of afternoon.	5	14:00	14:05	
Simon Cheeseman	ORE Catapult	Reprise of key issues from morning session. CFA & CSC.	10	14:05	14:15	
Tom Quinn	ORE Catapult	FLOW in the Celtic Sea. Size & Scope. Update on leasing and CfD rounds.	15	14:15	14:30	
All		Q&A	5	14:30	14:35	
Scott Davie	ORE Catapult	Anchoring & Mooring Systems	15	14:35	14:50	
All		Q&A	5	14:50	14:55	
Bradley McKay	ORE Catapult	Electrical Infrastructure	15	14:55	15:10	
All		Q&A	5	15:10	15:15	
Julie Taylor	ORE Catapult	Wrap Up. Next Steps.	10	15:15	15:25	
Total			85			

Offshore Wind and FLOW Context

Simon Cheeseman – ORE Catapult South West Programme Manager

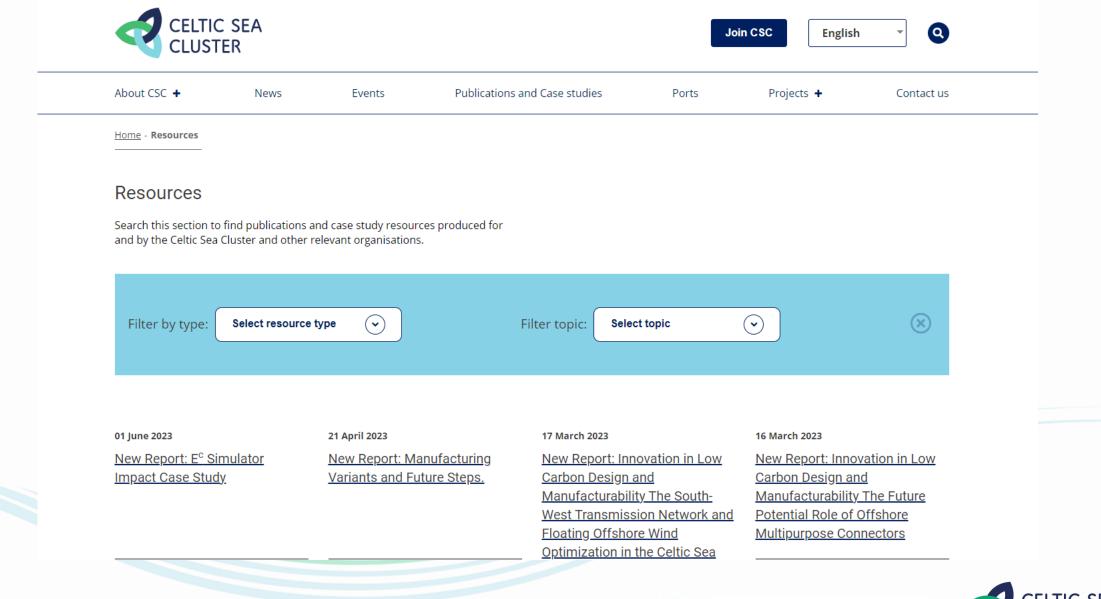
Simon Cheeseman

- Work for Offshore Renewable Energy Catapult, South West Programme Manager running offices in Cornwall and Devon. Delivering strategy to accelerate floating wind in the Celtic Sea.
- Background is managing complex, multi partner, multi million-pound projects in renewables in public and private sectors.
- Sit on Board of the Celtic Sea Cluster and represent ORE Catapult on the Celtic Sea Developers Alliance.

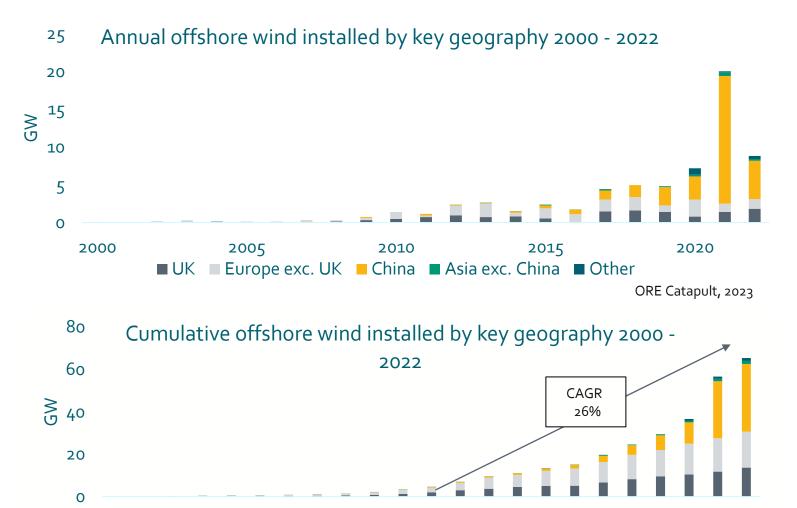
About ORE Catapult

Our Mission: Deliver the UK's largest clean growth opportunity by accelerating the creation and growth of UK companies in offshore renewable energy.

- 1. 300+ staff including engineering and research experts with deep sector knowledge
- 2. Independent and trusted partner
- 3. Work with industry and academia to commercialise new technologies
- 4. Reduce the cost of offshore renewable energy
- 5. Deliver UK economic benefit



Celtic Sea Cluster Publications and Case studies [Resources]



Global offshore wind growth

Offshore wind global capacity to date

2010

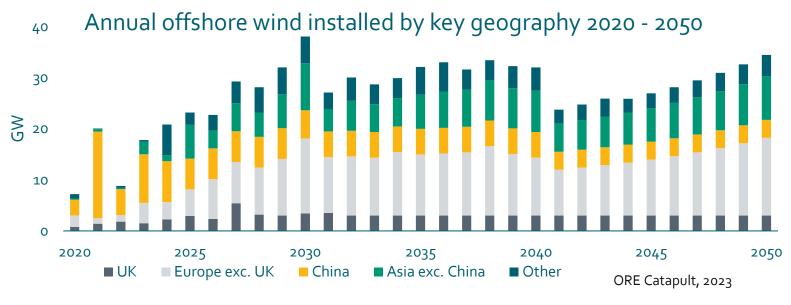
Europe exc. UK China Asia exc. China Other

2015

2020

ORE Catapult, 2023

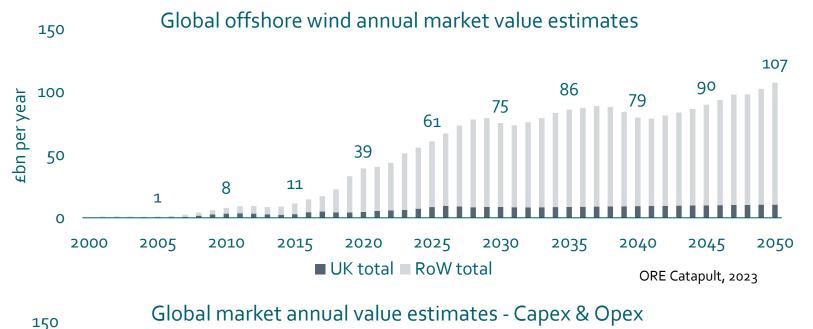
2000


■ UK

2005

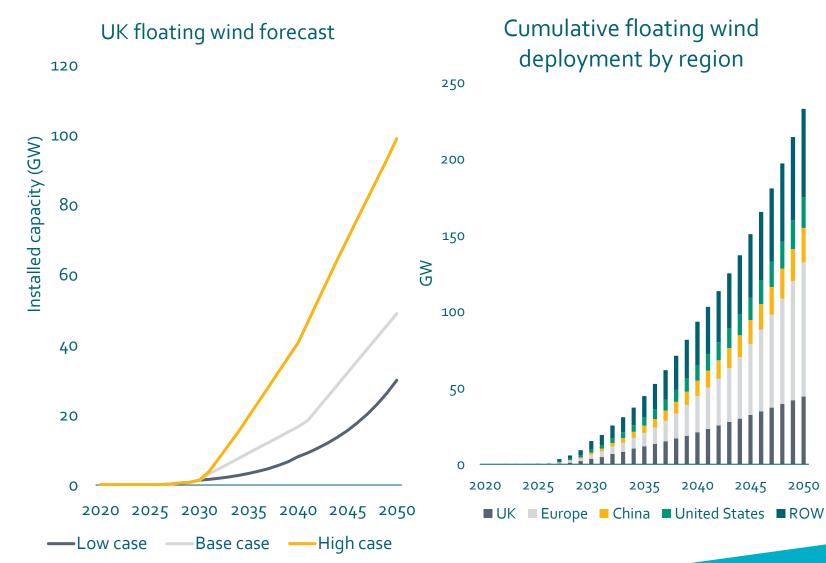
- Up to 2015, offshore wind very much a European play
- Generally, countries building on existing onshore wind expertise
- China overtook the UK as the world's leader in offshore wind capacity after installing 16.9GW in 2021.
- UK share of capacity falling from peak 53% in 2012 to 21% in 2022
- Total Europe share falling from 91% in 2012 to 47% in 2022
- CAGR* from 2010 to 2020 of 27%

Offshore wind global capacity forecast


1000 Cumulative offshore wind installed by key geography 2020 -

- Our forecast assumes a near-term push to achieve 2030 targets
- Annual installations increase from ~9GW in 2022 to 38GW in 2030 and 34GW in 2050
- Total Europe share falling from 47% in 2022 to 39% in 2050
- China share drops from peak of 49% in 2022 to 20% by 2050
- Other markets grow share from 2% in 2022 to 13% by 2050

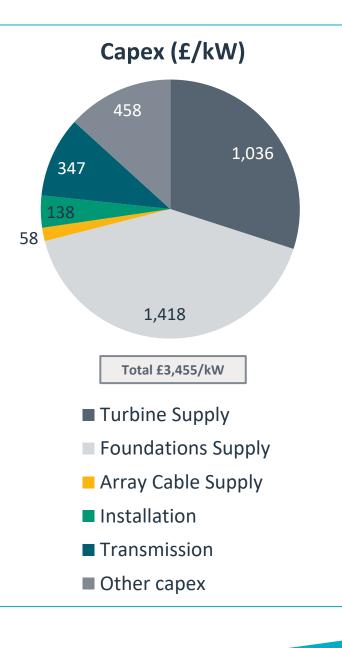
Offshore wind global market value estimates

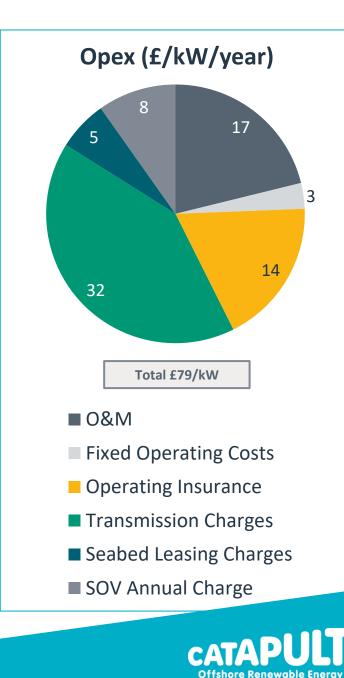


- Near doubling of market value from 2020 to 2030 due to ramp-up to 2030 targets
- Market value reaches £107bn per year by 2050 – slower increase due to more gradual ramp-up and cost reductions

- Capex always forms largest share of value while building out
- Opex taking increasing share as installed base grows
- Continuous pipeline important for short-term construction jobs

Floating wind is expected to take off from a standing start

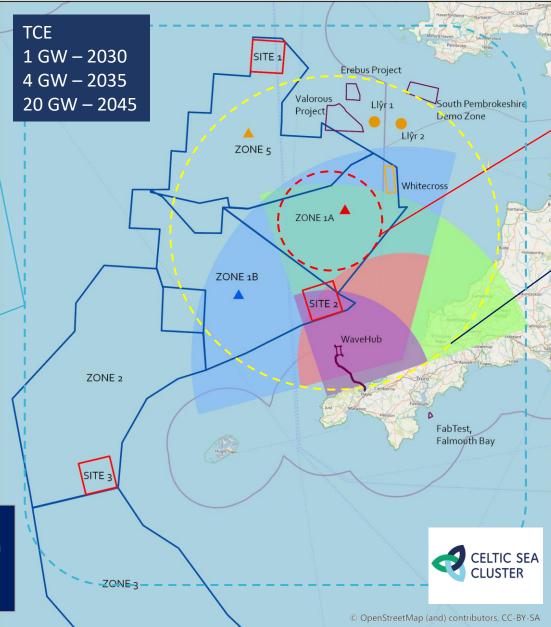

- ScotWind leasing round allocated nearly 17GW to floating offshore projects.
- March 2023 saw the announcement of 5.4GW of floating wind lease capacity from the INTOG round.
- Scotland is expected to be one of the largest markets in the world for floating offshore wind with planned projects currently making up 31% of the global floating pipeline.
- The UK has a target of 5GW of installed floating wind capacity by 2030.
- Forecasts for the UK market depend on total OSW deployment


 geographical constraints are not an issue.
- Europe is expected to be a firstmover in floating wind as it was with bottom-fixed
- Elsewhere, the west coast of US, Japan, S. Korea and Taiwan are likely to be core floating wind markets

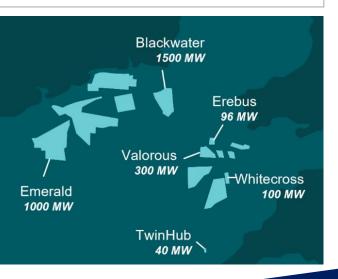
2030 Reference Site (Floating)

Scenario Definition	Unit	2030 Ref Site
Turbine numbers	#	67
Turbine rating	MW	15MW
Windfarm capacity	MW	1,005MW
Mean wind speed at hub height	m/s	10.52
Turbine foundation type	text	Semi-sub
Array cable type	kV	66kV
Transmission System Type	#	HVAC
Water depth	metres	98
Distance to O&M port	km	100
Distance to cable landfall	km	85
O&M Vessel Strategy	text	SOV

Marine Operations Laboratory to understand DP & Marine Simulations constraints & future ports, vessel and marine operations needs

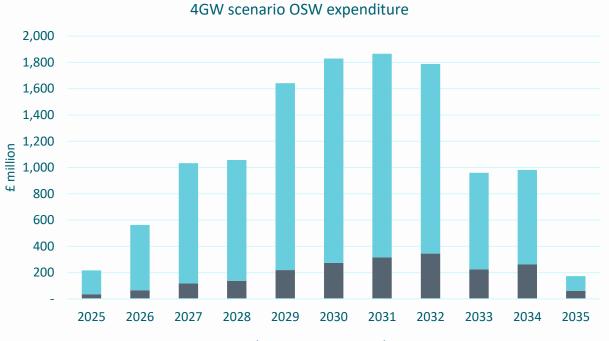

Ec simulator to output: Levelized Cost of Energy (LCOE) Levelized Cost of Carbon Abatement (LCCA) and Energy returned for Energy Invested. Will model virtual sites and help define key assumptions for FLOW in the 2030's.

Low Carbon materials & fabrication. Looking at blades, towers, foundation and electrical infrastructure and understanding the local opportunity

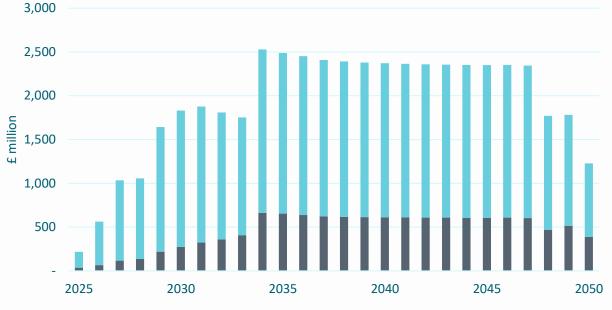


12 months wind resource acquisition by Flidar commencing March 2022

Understand how we can reduce carbon associated with EIA's, drive local solutions, accelerate the development phase



Tom Quinn



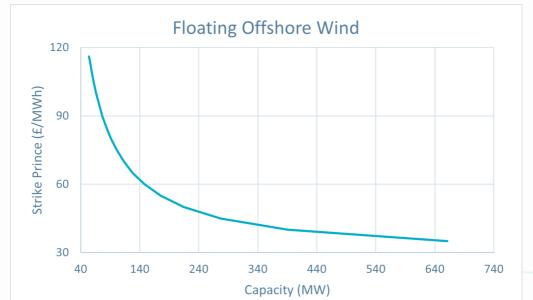
Market opportunity for the Celtic Sea region

■ Local content ■ Imported

20GW scenario OSW expenditure

■ Local content ■ Imported

Components	Unit	4GW case	20GW case
Turbines / substructures	#	235	1,035
Mass of substructures	tonnes	837,000	3,877,000
Mooring lines	km	600	2,600
Anchors mass	tonnes	24,200	120,000
Array cables	km	580	2,900
Export cables	km	1,100	5,200


CfD auctions putting pressure on developers

lssues

- CfD auctions to be run annually
- Current auction (AR5) has FOW competing with other "emerging" tech in Pot 2 such as biomass, geothermal, wave & tidal.
- Auction Pot 2 budget of £25m (£35m minus £10m ringfenced for tidal) allows for ~40-150MW of FOW depending on strike price bid if FOW outbids other tech
- FOW maximum strike price of £116/MWh (2012 terms, ~£155 today) will be a challenge for some developers

However...

- Budgets for future rounds will likely increase to allow for greater FOW deployment
- Non-price criteria may be included in future CfD rounds

European Union European Regional Development Fund DELIVERED BY Cornwall FLOW Accelerator

Questions and Answers

FLOATING OFFSHORE WIND CENTRE OF EXCELLENCE

Carbon Emission Reduction in Mooring Systems for FLOW

Scott Davie Floating Wind Engineer Offshore Renewable Energy Catapult

Why look for low carbon mooring solutions?

• With the huge growth planned for Floating Offshore Wind (FLOW) there will be increased demand for materials and manufacturing

Estimated mooring component requirements:

4GW in the Celtic Sea (2023 Leasing Round)	20GW in the Celtic Sea (2050 Target)
~ 500 km mooring lines	~ 2,500 km mooring lines
~ 250,000 Tonnes of chain	~ 1,250,000 Tonnes of chain
~ 1,000 anchors	~ 5,000 anchors
> 24,000 Tonnes of anchors	> 120,000 Tonnes of anchors

Image Courtesy of Offspring International

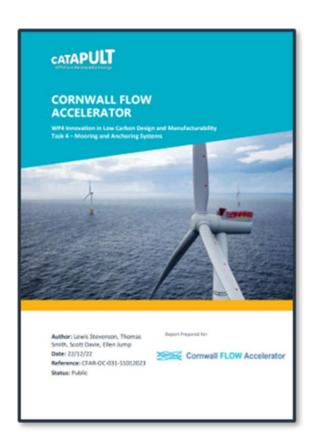
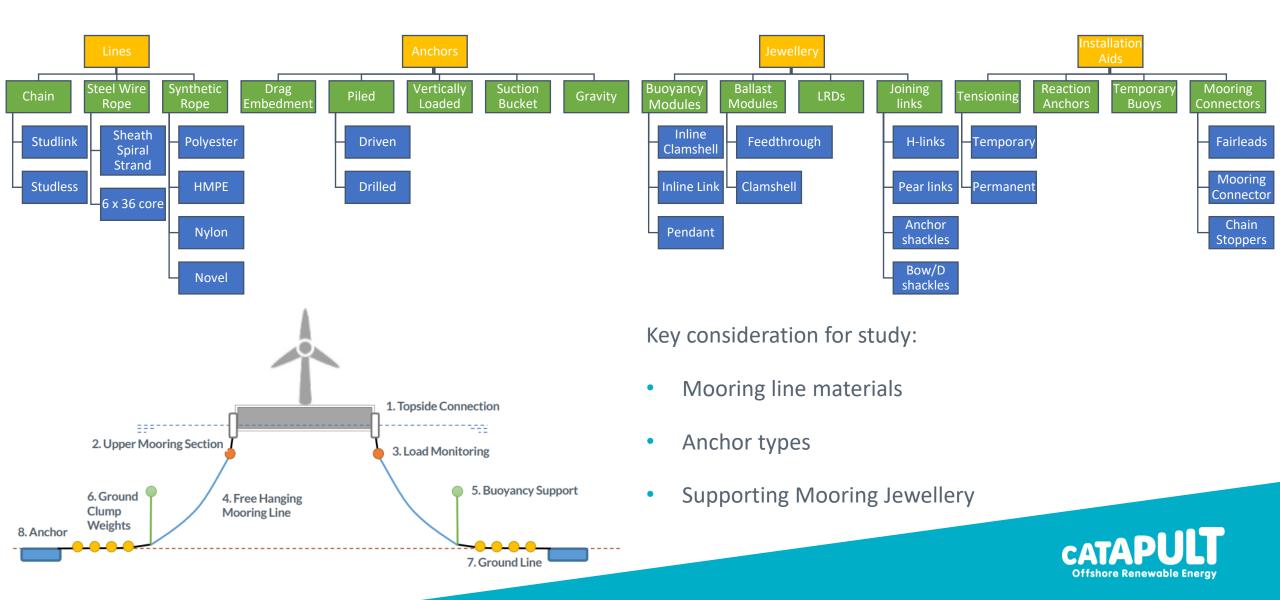


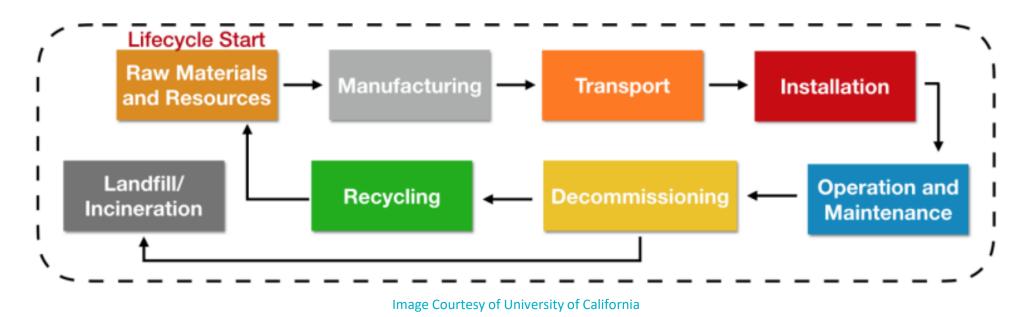
Image Courtesy of Lankhorst Offshore

• Current mooring design components and manufacturing methods are carbon intensive

Overview of low carbon mooring & anchoring study


Aims

- To calculate the carbon emissions using Life Cycle Analysis for:
 - Conventional mooring materials and configurations used in FLOW so far
 - Potential alternative mooring materials and configurations to be used in FLOW in future
- To identify opportunities for low carbon design and manufacture for the local supply chain


Report from the study is available on the ORE Catapult and Celtic Sea Cluster websites

Mooring System Component Breakdown

Carbon Emission Life Cycle Analysis (LCA)

Each stage can be broken down into a series of processes

- Lack of available information to fully calculate the carbon emissions for O&M and end of life stages
- The energy and materials required for each process must be identified
- Carbon Emissions were calculated in tonnes of carbon dioxide (TeCO₂e) per turbine

Process Example – Steel Chain Manufacture

Starting with extruded CAROUSEL (CHAIN MAKING MACHINE) Steel bar production from raw material steel bar... BENDING WELDING Bar cutting and heating BAR CUTTING BAR HEATING DESCALING **Carousel Processes** ALIGNMENT TRIMMING Heat treatment and Shot Blasting IN PRE-INSPECTION 1. Visual Inspection 2. Magnetic Particle Inspection 3. Ultrasonic Inspection Emissions = carbon intensity of process x BREAK LOAD TESTING mass of material produced MECHANICAL TESTS HEAT TREATMENT SHOT BLASTING 1.Tensile Test DATA BOOK 2.Impact Test PROOF LOAD TESTING SHIPPING IN FINAL INSPECTION 1. Link Dimensions 2. Visual Inspection TEMPERING OUENCHING PAINTING 3. Magnetic Particle Inspection 4. Ultrasonic Inspection

Key carbon emitting processes:

Offshore Renewable Energy

Image Courtesy of Hamanaka Chain (Adapted)

Wind Farm Site Design Requirements

Indicative Wind Farm Site Characteristics:

- 100m water depth
- Various seabed conditions

Image Courtesy of World Atlas

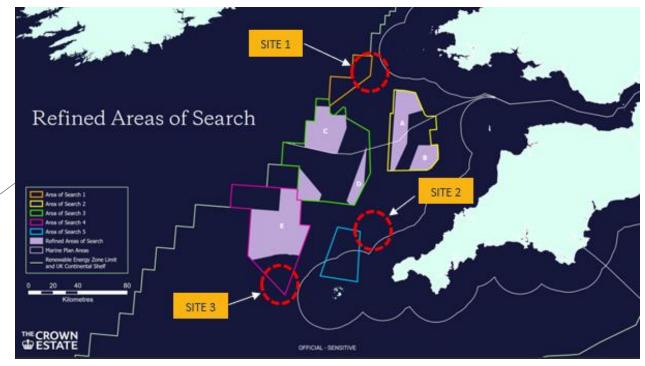
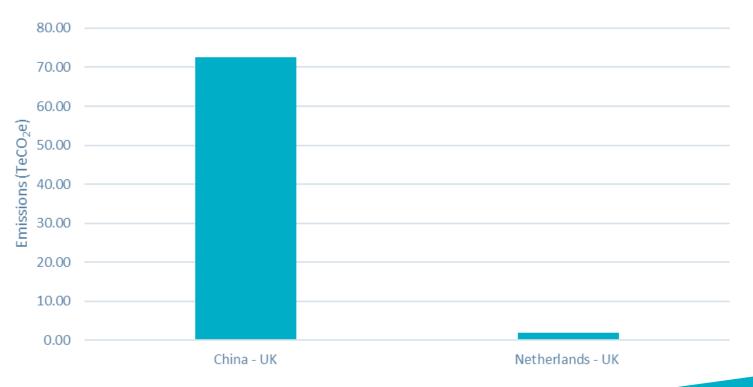
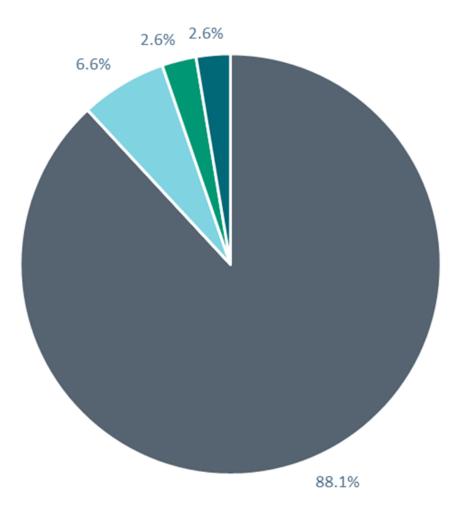


Image Courtesy of The Crown Estate


Conventional Mooring Configurations – 15MW Semi-Sub

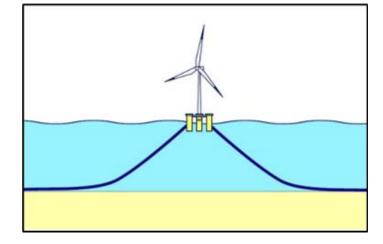
Configuration Name	Line Type	No. of Lines	Total Chain Length (m)	Chain Size (mm)	Rope Length (m)	Rope Diameter (mm)	Ancillaries	Anchor Type	Anchor Sizing (Te)
Catenary A (3-line)	Chain	3	750	152	-	-	-	Drag Embedment	30
Catenary B (6-line)	Chain	6	750	132	-	-	-	Drag Embedment	23
Catenary C (9-line)	Chain	9	750	112	-	-	-	Drag Embedment	12
Semi-taut (Buoyant)	Chain, Synthetic Rope	3	400	152	150	230	Buoyancy Modules	Drag Embedment	15
Ballasted	Chain, Synthetic Rope	3	400	152	150	220	Clump Weights	Drag Embedment	12
Taut	Chain, Synthetic Rope	3	50	152	350	200	-	Suction Bucket	113
Cat	enary	Sei	mi-taut (Mixed Bu	oyant)		Ballasted		Taut	
					CAT				

Transportation – Carbon Emissions Results


Port Route	Country	Sea Route Distance
Rotterdam - Southampton	Netherlands - UK	487km
Guangzhou – Southampton	China - UK	19,031km

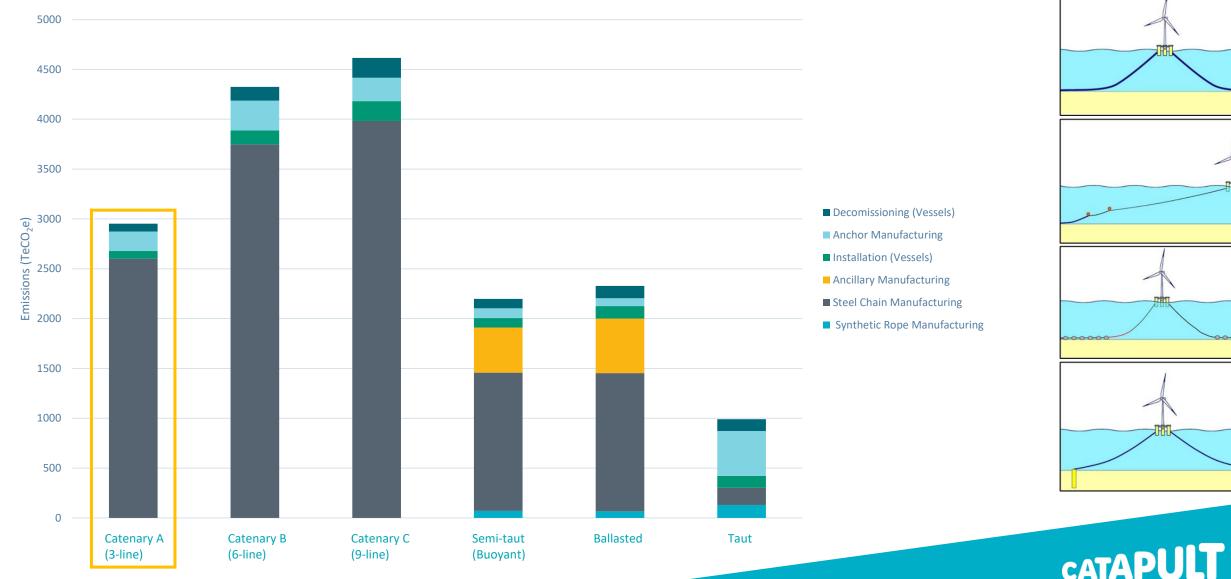
- Approximately 375 tonnes of imported steel is required for the fabrication of a single steel chain mooring line and anchor
- Transportation from China produces approximately 40 times more carbon emissions
- Import emissions are often not accounted for

Conventional 3-Line Catenary A - Carbon Emissions Results

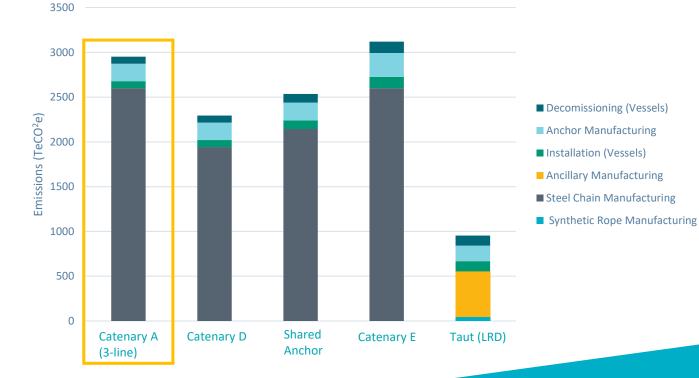


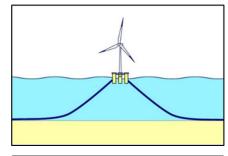
Steel Chain Manufacturing

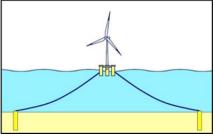
Anchor Manufacturing


Installation (Vessels)

Decomissioning (Vessels)


Base Case Configurations - Carbon Emissions Results




Offshore Renewable Energy

Alternative Configurations - Carbon Emissions Results

Configuration Name	Line Type			
Catenary A (3-line)	Basic 3 line steel chain catenary base case			
Catenary D	Catenary with ground chain of a reduced diameter			
Shared Anchor	Catenary with shared anchors and reduced ground chain diameter			
Catenary E	Catenary A with driven pile anchors instead of DEAs			
Taut (LRD)	Fully optimised configuration with LRDs, suitable for typical catenary scenario			

Key Findings from Study

Mooring system design carbon emission reduction opportunities:

- Reduced use of steel results in the highest carbon saving
- Increased use of synthetic rope and use of mooring ancillaries such as LRDs in mooring configuration
- Transitioning away from catenary mooring configurations to shorter and lighter semi-taut and taut systems
- Exploring different anchor solutions and shared anchors

Manufacturing and supply chain carbon emission reduction opportunities:

- Utilising raw materials and components manufactured with recycled or "green" materials and clean energy sources
- Reducing imports and transportation distance of finished components (increased local content)

What does this mean for the local supply chain?

Near-term pipeline opportunities

- > Developing synthetic rope technology and manufacturing capability
- Opportunity to develop novel anchor solutions

Far-term pipeline opportunities

- Manufacturing novel anchor solutions
- Development of green manufacturing facilities
- Use of green materials (recycled steel, bio synthetics)

What does this mean for local ports?

• Use of synthetic rope instead of chain will enable greater storage and mobilisation capabilities for local ports

• This may also be the case for novel anchor solutions that are not a heavy-duty as traditional anchor types

Questions and Answers

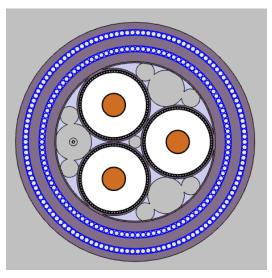
CATAPULT Offshore Renewable Energy

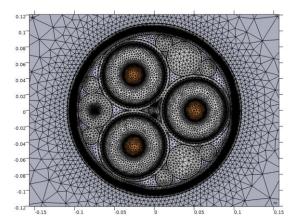
Bradley McKay – Research Engineer Electrical

BSc Hon, MSc 12.06.2023

Connectors

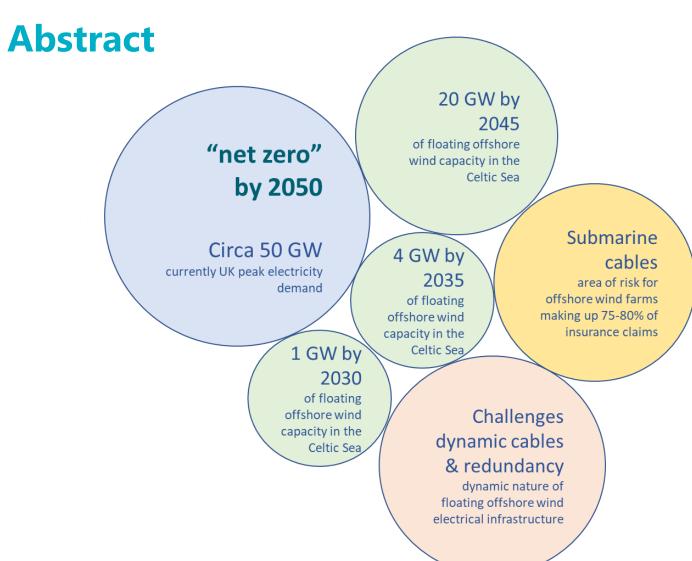
Cables & Floating Offshore Wind Transmission 2023


Electrical Key Conclusions Offshore


Challenge

- 1. 132 kV identified as next array operating voltage
- 2. There is an urgency to making the transition to 132 kV by bringing the suppliers & developers together in the same room
- 3. 132 kV offers significant cost savings

Further work will be required to address uncertainty in 132 kV array cables


- 1. Improved understanding on the requirements for 132 kV array cables
- 2. Gaps have been identified in existing testing standards
- 3. Accelerate and de-risk the transition to 132 kV (subsea substations plug-&-play, and dynamic cable failure & fatigue)
- 4. Understand costs & availability (for e.g., copper vs aluminium)
- 5. Agree on installation methods & power losses (HVAC versus HCDC)

<u>Aim</u>:

This session will discuss some of the latest work ongoing within ORE Catapult and introduce some of the key challenges foreseen in the floating offshore wind South-West electrical infrastructure to expedite FOW in the Celtic Sea.

Agenda:

- 1. Celtic Sea electrical grid challenge
- 2. Transmission scenarios
- 3. Installation methods
- 4. Power output
- 5. Connectors
- 6. HVAC versus HVDC

<u>Celtic Sea Floating Wind: October 2022 update | Celtic Sea Floating Wind: October 2022 update (thecrownestate.co.uk)</u> Submarine Cable Consulting & Market Intelligence | 4C Offshore

ORE Catapult Cornwall FLOW ACCELERATOR Published Reports (2022/2023)

Title: A1 Optimized cable connection options for floating offshore wind

Ref: CFAR-OC-028-03102022

CORNWALL FLOW ACCELERATOR PROJECT INNOVATION IN LOW CARBON DESIGN AND MANUFACTURABILITY

OPTIMIZED CABLE CONNECTION OPTIONS FOR FLOATING OFFSHORE WIND

REPORT Electrical infrastructure and grid connections

CELTIC SEA

Title: A2 Exploring the potential interactions between the floating offshore wind and hydrogen sectors Ref: CFAR-OC-027-04102022

CORNWALL FLOW ACCELERATOR

PROJECT INNOVATION IN LOW CARBON

CATAPULT

Title: A3 The future potential role of offshore multipurpose connectors

Ref: CFAR-OC-038-16032023

CORNWALL FLOW ACCELERATOR PROJECT Innovation in Low Carbon Design and Manufacturability

The Future Potential Role of Offshore Multipurpose Connectors

LEAD AUTHOR

REPORT Electrical infrastructure and grid connection:

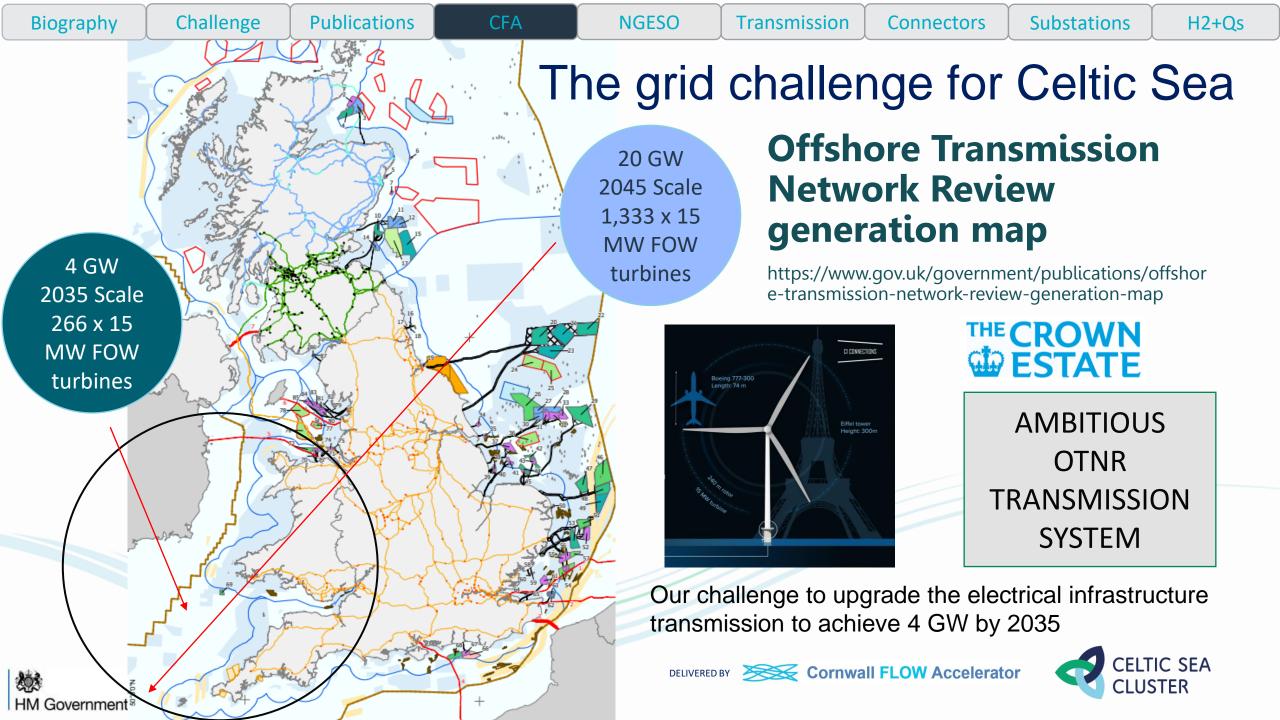
REPORT - Floating Offshore Wind Electrical Infrastructure and Grid Connections

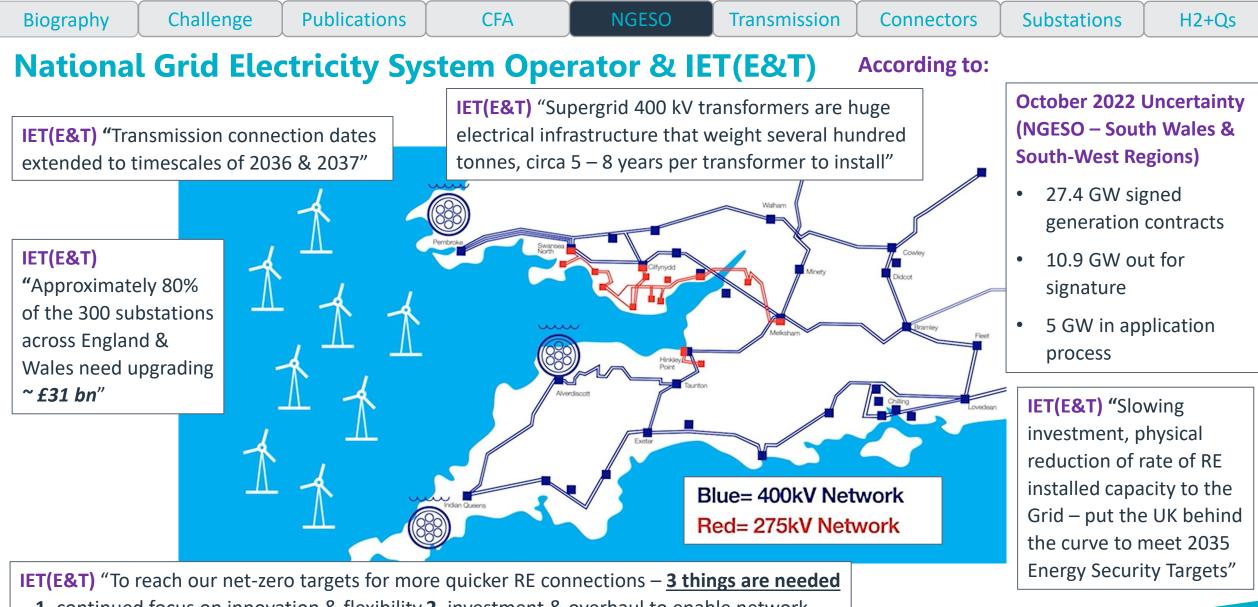
Cornwall FLOW Accelerator

iment

European Union European Regional Development Fund Title: A4 The South-West transmission network and floating offshore wind optimization in the Celtic Sea Ref: CFAR-OC-039-17032023

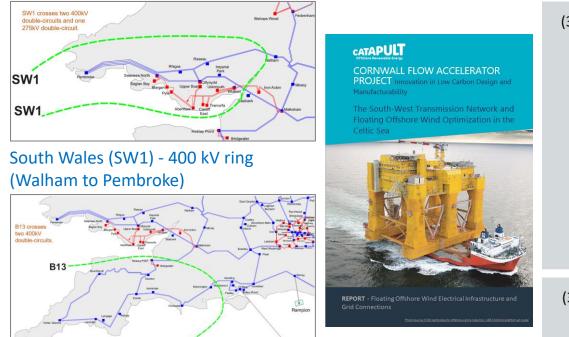
CORNWALL FLOW ACCELERATOR PROJECT Innovation in Low Carbon Design and Manufacturability


The South-West Transmission Network and Floating Offshore Wind Optimization in the Celtic Sea



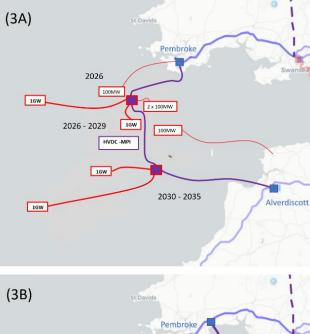
REPORT - Floating Offshore Wind Electrical Infrastructure and Grid Connections

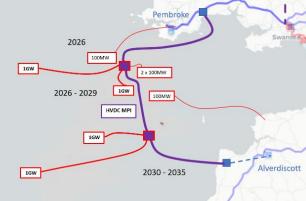
Bio	graphy	Challenge	Publications	CFA	NGESO	Trar	nsmission	Connectors	Substations	H2+Qs
Ce	eltic S	ea Clust	er Public	ations a	nd Case	stuc	dies (R	esource	sl	
									0]	
	← C	https://celticseacluster.	com/resources/				A" to	c≞ @ 🏶	6	
	CRE Catapult									
		CELTIC SEA								
		CLUSTER	e e e e e e e e e e e e e e e e e e e	CELTIC SEA CLUSTER		Join CSC	English	n 🔻 Q		
-		CLOOTLIN								
	About CS	SC + News	Events	Publications and C	ase studies Por	ts	Projects 🕇	Contact us		
\subseteq	17 March 2023		16 March 2023		larch 2023		09 March 2023			
		<u>rt: Innovation in</u>	<u>New Report: Innov</u>		<u>)W NOW! – 28th Febr</u>		Concrete for F			
		<u>n Design and</u>	Low Carbon Desig		<u>23</u>	7	<u>Workshop 17th</u>	<u>h October</u>		
		<u>irability The</u>	<u>Manufacturability</u>							
		t Transmission	Potential Role of C							
		nd Floating	<u>Multipurpose Con</u>	nectors						
		<u>/ind Optimization</u>								
	in the Celti	<u>c Sea</u>								
\langle	04 October 20	22	03 October 2022	16 M	lay 2022		29 April 2022			
	Exploring t	<u>he Potential</u>	Optimised Cable (Connection <u>Co</u>	rnwall FLOW Accelera	ator	<u>Celtic Sea Por</u>	<u>rts,</u>		
	Interaction	<u>s Between FLOW</u>	<u>Options For FLOW</u>	<u>Report</u> Pro	<u> ject – Low Carbon</u>		Engineering a	<u>nd</u>		
	<u>& Hydroger</u>	<u>n Report</u>		Ma	nufacturing Reports		<u>Infrastructure</u>			
	Publication		Publication	Pub	lication		Publication			
MM Go	overnment	European Re Development	gional		DELIVERE	D BY 🎽	Section Cornwall	I FLOW Accelerate	or CELT CLUS	IC SEA STER


- 1. continued focus on innovation & flexibility 2. investment & overhaul to enable network
 capacity in anticipation of future need 3. a coordinated & accelerated planning system"

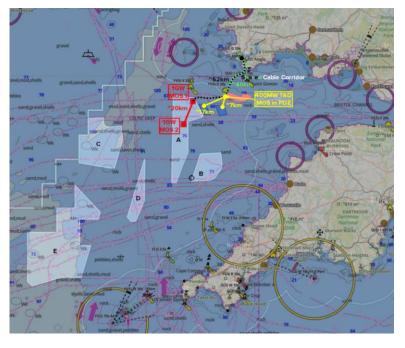
Source1:The Institution of Engineering and Technology (Engineering & Technology) March 2023Source2:Regional updates | National Grid ET

Biography	Challenge	Publications	CFA	NGESO	Transmission	Connectors	Substations	H2+Qs
-----------	-----------	--------------	-----	-------	--------------	------------	-------------	-------


ORE Catapult CFA & HND Alternative Scenarios & PDZ (research 2022/2023)



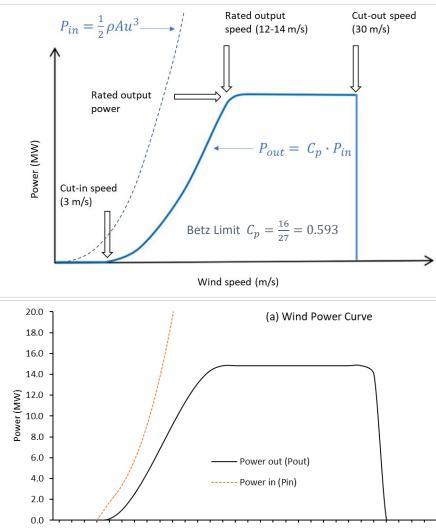
South-West (B13) crosses two 400 kV double-circuits


B13

Question: How can the industry integrate future floating wind developments into the South-West and South Wales energy network?

Beyond 2035 HVDC Interconnector Scenarios

The Crown Estate – Refined Areas of Search using the Pembrokeshire Demonstrator Zone (PDZ) or also known as Multipurpose Offshore Substation (MOS)


Biography	Challenge	Publications	CFA	NGESO	Transmission	Connectors	Substations	H2+Qs
	apult CFA		Wind Arr 2: Daisy Chain R			(research	2022/202 3	3)
≈ 2 km		≈ 2 kn	= 2 km		= 2 km			
4: Fishbone	Layout			isy Chain Hybrid	6: Sta	ar layout (four &	six-connection g	roups)
= 0.5 km ≈ 2 km ≈ 4			·				*1.5 km 00 -2 km 00 -2 km 00 00 00 00 00 00 00 00 00 0	
							сатАР	ULT

CATAPULI Offshore Renewable Energy

CFA Electrical Power Output (research/reports 2022/2023)

Power output from 15.0 MW turbines

 P_{in} is so effective, due to the power of wind that varies with velocity cubed

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Wind speed (m/s)

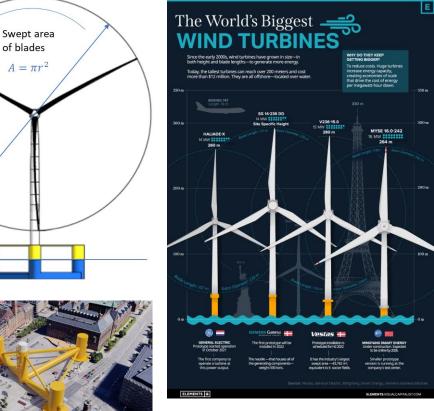
Specifications

 Model V236 236 m, rotor diameter 115.5 m blades

Rotor

diameter

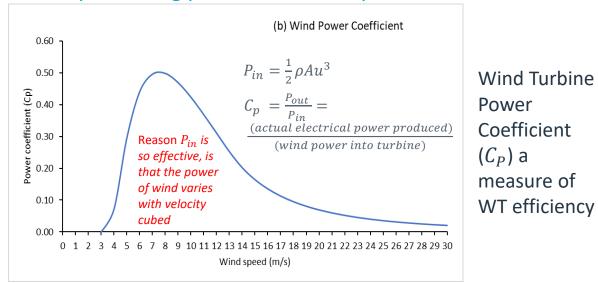
iPS Baltics - Stiesdal Tetrasub design at

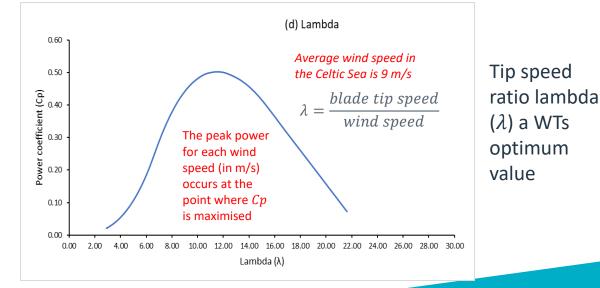

Copenhagen – Rådhuspladsen (110 m

one of the main squares in

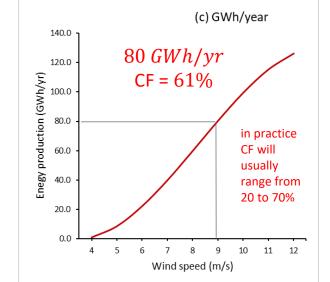
long / 35 m high)

- Swept area 43,744 m²
- Total height from sea level **280 m**
- Blade mass 65 mt
- Rotor–nacelle assembly
 mass 1,017 mt
- Platform mass including the ballast 34,387 mt
- Turbines spaced at 8x the rotor diameter (wake effect) circa 2 km


Animation: Visualizing the World's Biggest Wind Turbines (visualcapitalist.com)



Biography	Challenge	Publications	CFA	NGESO	Transmission	Connectors	Substations	H2+Qs


CFA Electrical Power Output (research/reports 2022/2023)

Actual electrical power output (Rate of electricity production in *GWh/yr*)

$$Energy = P_{out} x time (8,760)$$

$$CF = \frac{P_{out} (actual energy output)}{P_{out} (maximum possible output)}$$

$$I_n = \frac{P_n}{\sqrt{3} \cdot U_{correct} \cdot pf}$$

$$= \frac{15MW}{(1.732 \cdot 125.4kV \cdot 0.95)} x10 WTs$$

$$= 727 A$$

S

De-rating factors: cable buried in seafloor at a **1 m** depth; seabed soil temperature **15° C**; soil thermal resistivity **0.7 K.m/W**

Power losses for 495 MW wind farm @ 15 MW wind turbines

- 132 kV, three core CSA at 800 mm² submarine inter-array cable
- Resistivity of copper 1.77x10⁻⁸ Ω.m string length 20 km
- Therefore, the required current flowing through the conductors is calculated below as **73 A** per turbine, and **727 A** for 10 turbines in a string that will be used in this example.

CFA Electrical Conductor Power Losses (research/reports 2022/2023)

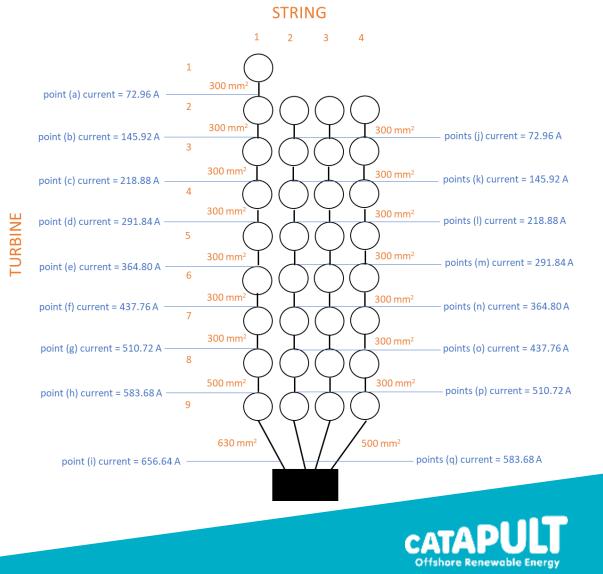
CFA

495 MW wind farm layout of 33 by 15 MW FOWTs connected via 132 kV copper dynamic inter-array cable

Electrical Conductor Power Losses

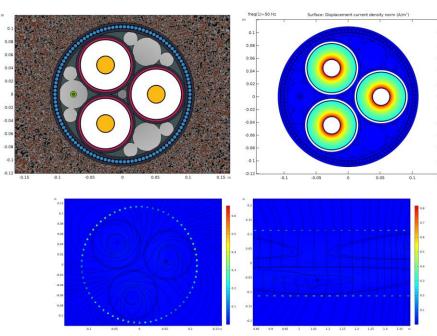
Standards Question:

For a **132 kV** cable rated string, the maximum number of 15 MW FOWT's allowable is 10 (based on the industry standard equates to less than **160 MW**)


Power cables have resistance, therefore power lost in the conductors can be calculated as for <u>simplicity</u>:

- $P = I^2 R$ with R as the resistance of the cables and I as the current that passes through them
- Power at the load is P = UI, so if the voltage U increases by 2x, only half the current I will be needed to deliver the same power

 $I = \frac{P}{U} = \frac{135 \, MW}{132 \, kV \, or \, 66 \, kV} = 1 \, kA \, or \, 2 \, kA$


• Therefore, in $P = I^2 R$, if half the current passes through the same conductors, the system will lose only a quarter of the power

 $P = I^2 R = 1 MW to 4 MW$

Dynamic Cable Power Losses (research 2023)

Remember 132 kV, HVAC three core CSA at 800 mm²

Christopher (2021) A 3D cable modelled in the COMSOL Multiphysics[®] simulation software

<u>**Conductor Losses**</u> (result from Joule heating of electrical currents in the conductors):

 $P_{core} = nRI^2 = circa 35 W/m$

<u>Screen Losses</u> (caused by circulating currents, only occurring in AC cables):

 $P_{screen} = n\lambda_1 R I^2 = circa \ 0.04 \ W/m$

<u>Armour Losses</u> (only applicable to AC cables):

 $P_{armour} = n\lambda_2 RI^2 = circa 2 W/m$

Dielectric Losses (electrical power that is wasted by heating the dielectric in the electric field - energy losses occur at the constant and variant current in the dielectric:

 $W_{d_t} = 3W_d = circa \ 1.3 \ W/m$

 $P_{total-losses} = P_{core} + P_{screen} + P_{armour} + W_{d_t} = 0.9 MW$

H2+Qs

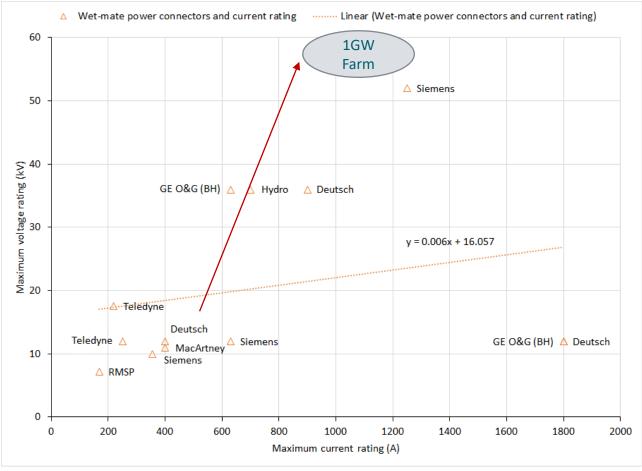
(Is this significant over 24 km?)

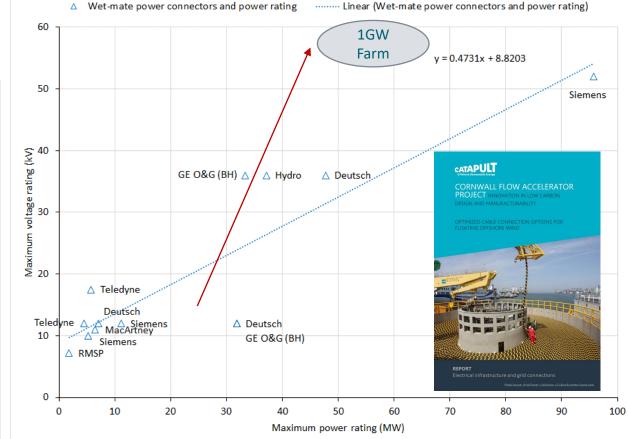
power factor is: $PF = \frac{P(actual)}{S(apparent)}$

$$=\frac{149.1\ MW}{157.9\ MVA}$$

= 0.94

Power Factor	Explanation
Good	- 0.95
Poor	0.95 - 0.85
Bad	0.85 and below




CFA wet mate connectors voltage & current (research/reports 2022)

Comparison of different types of high voltage wet mate connectors from manufacturers (wet mate or dry mate connectors)

Next question:

Is the industry moving from 66 kV to 132 kV for dynamic cables and what are the timescales when the TRL is low?

 $P = \sqrt{3} x U x I x Cos\theta$ where, $PF = Cos\theta$

12

1

10

0

3

9

Floating Wind - SBT Energy (sbt-energy.com)

Wet Mate Turret

Buoy (SBT Energy)

ORE Catapult Future FOW Projects and Cable Focus (2023)

I - Dynamic power cable(s)

6 - Suspension mooring line

7 - Mooring connecto

10 - Cable hang-offs

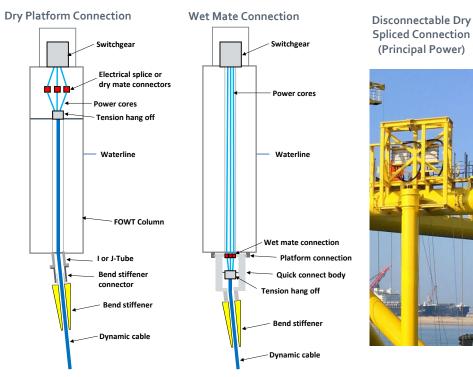
8 - Mooring line(s)

3 - Standard J-tube arrangements

5 - Suspension mooring line connection

9 - Optional mooring line connection directly onto buoy

5


11 - Cable end configuration (project specific)

12 - Pull-in latch / buoy pickup point

- Buoy vertical hang-off shim

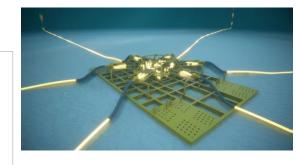
2 - Bend stiffener

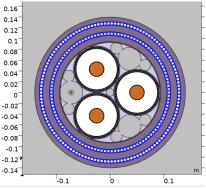
4 - DTR Buoy

Challenge

Single Phase Wet Mate Connector (Siemens) 36 kV qualified, 66 kV in qualification, 132 kV Early concept

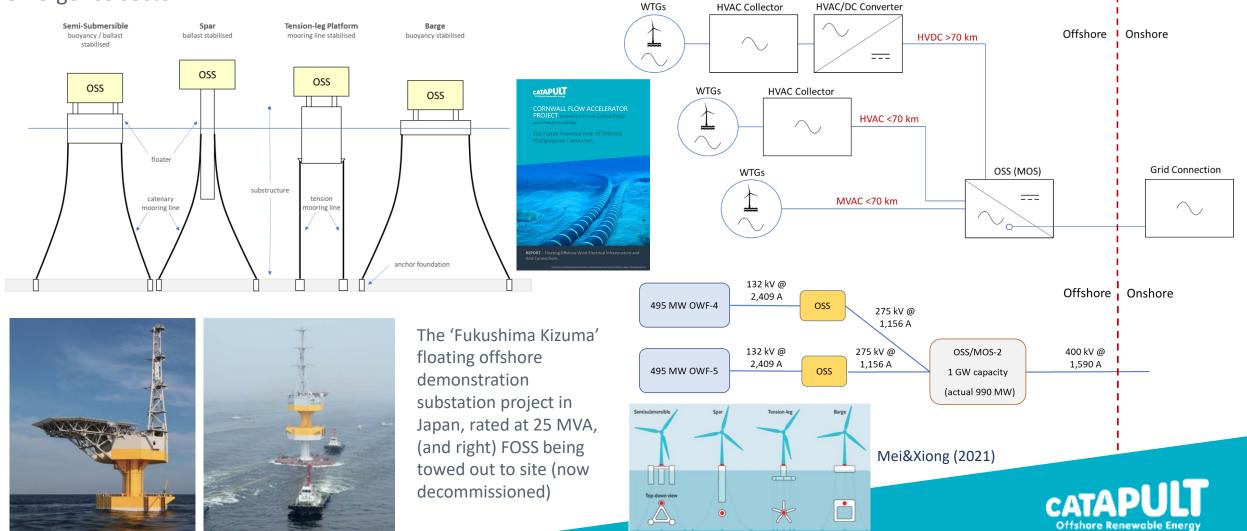
66 kV & 132 kV qualified & proven

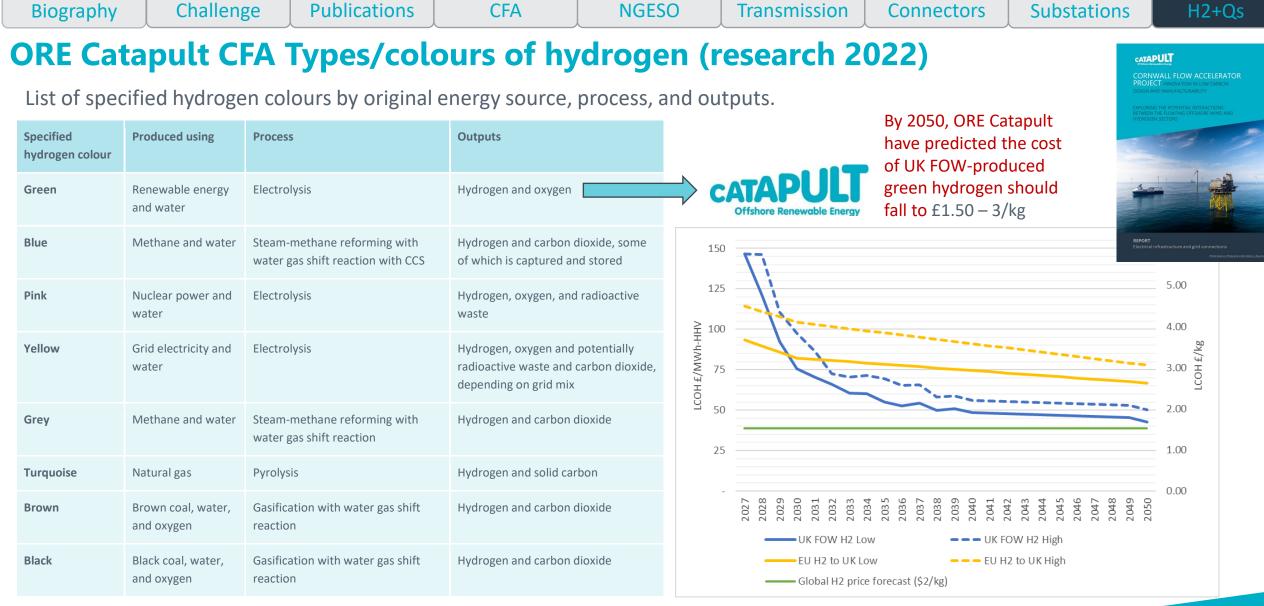

Dry Mate Connector (ETA)


Spliced Connection (J+S) 66 kV & 132 kV qualified and proven



OTR Ready to be pulled int a Central Turbine FOWT Subsea Junction Box with wet mates (Siemens / Subsea 7)


Cables are expensive to install and maintain, as well as difficult to analyze experimentally - FUTURE DEVELOPMENT: to use electromagnetics modeling to:


(1) Test cable designs virtually, (2) visualize how different cable parameters affect core, screen, armor, and dielectric losses, (3) predict cable performance in different installation conditions

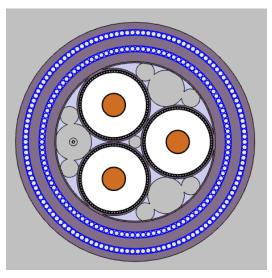
ORE Catapult CFA multipurpose offshore substations (research 2022)

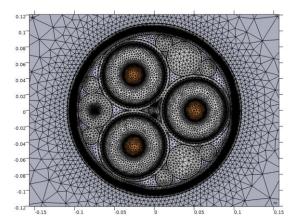
Multipurpose offshore substations could be the technical solution as a shared asset for connecting floating offshore wind projects in the Celtic Sea. To overcome grid constraint and reduce uncoordinated cable landfalls in a response to the rapid emergence sector.

An interesting argument is we think it would be hard to put an electrolyser offshore. We all think this is a relatively new field, and, tentatively, perhaps the current industry is thinking of offshore wind to electrolysis projects in the short term are going to have onshore electrolysers.

Connectors

Cables & Floating Offshore Wind Transmission 2023


Electrical Key Conclusions Offshore


Challenge

- 1. 132 kV identified as next array operating voltage
- 2. There is an urgency to making the transition to 132 kV by bringing the suppliers & developers together in the same room
- 3. 132 kV offers significant cost savings

Further work will be required to address uncertainty in 132 kV array cables

- 1. Improved understanding on the requirements for 132 kV array cables
- 2. Gaps have been identified in existing testing standards
- 3. Accelerate and de-risk the transition to 132 kV (subsea substations plug-&-play, and dynamic cable failure & fatigue)
- 4. Understand costs & availability (for e.g., copper vs aluminium)
- 5. Agree on installation methods & power losses (HVAC versus HCDC)

Questions and Answers

Afternoon Wrap Up

Julie Taylor

The second